Ergodic Markov Chains

11/17/2005

Definition

- A Markov chain is called an ergodic chain if it is possible to go from every state to every state (not necessarily in one move).
- Ergodic Markov chains are also called irreducible.
- A Markov chain is called a regular chain if some power of the transition matrix has only positive elements.

Example

- Let the transition matrix of a Markov chain be defined by

$$
\left.\mathbf{P}=\begin{array}{c}
1 \\
1 \\
0 \\
2 \\
2 \\
1
\end{array} \frac{1}{0}\right) .
$$

- Then this is an ergodic chain which is not regular.

Example: Ehrenfest Model

- We have two urns that, between them, contain four balls.
- At each step, one of the four balls is chosen at random and moved from the urn that it is in into the other urn.
- We choose, as states, the number of balls in the first urn.

$$
\mathbf{P}=\begin{gathered}
\\
0 \\
1 \\
2 \\
3 \\
4
\end{gathered}\left(\begin{array}{ccccc}
0 & 1 & 2 & 3 & 4 \\
0 & 1 & 0 & 0 & 0 \\
1 / 4 & 0 & 3 / 4 & 0 & 0 \\
0 & 1 / 2 & 0 & 1 / 2 & 0 \\
0 & 0 & 3 / 4 & 0 & 1 / 4 \\
0 & 0 & 0 & 1 & 0
\end{array}\right) .
$$

Regular Markov Chains

- Any transition matrix that has no zeros determines a regular Markov chain.
- However, it is possible for a regular Markov chain to have a transition matrix that has zeros.
- For example, recall the matrix of the Land of Oz

$$
\left.\mathbf{P}=\begin{array}{ccc}
\mathrm{R} & \mathrm{~N} & \mathrm{~S} \\
\mathrm{R}\left(\begin{array}{c}
1 / 2
\end{array}\right. & 1 / 4 & 1 / 4 \\
\mathrm{~N}\left(\begin{array}{c}
\\
\mathrm{S} \\
\mathrm{~S} \\
1 / 4
\end{array}\right. & 0 & 1 / 2 \\
1 / 2
\end{array}\right) .
$$

Theorem. Let \mathbf{P} be the transition matrix for a regular chain. Then, as $n \rightarrow \infty$, the powers \mathbf{P}^{n} approach a limiting matrix \mathbf{W} with all rows the same vector \mathbf{w}. The vector \mathbf{w} is a strictly positive probability vector (i.e., the components are all positive and they sum to one).

Example

- For the Land of Oz example, the sixth power of the transition matrix \mathbf{P} is, to three decimal places,

$$
\left.\mathbf{P}^{6}=\begin{array}{ccc}
\mathrm{R} & \mathrm{~N} & \mathrm{~S} \\
\mathrm{R}\left(\begin{array}{l}
.4 \\
\mathrm{~N} \\
\mathrm{~S} \\
\mathrm{~S} \\
.4 \\
.2
\end{array}\right. & .4 \\
.4 & .2 & .4
\end{array}\right) .
$$

Theorem. Let \mathbf{P} be a regular transition matrix, let

$$
\mathbf{W}=\lim _{n \rightarrow \infty} \mathbf{P}^{n}
$$

let \mathbf{w} be the common row of \mathbf{W}, and let \mathbf{c} be the column vector all of whose components are 1. Then
(a) $\mathbf{w} \mathbf{P}=\mathbf{w}$, and any row vector \mathbf{v} such that $\mathbf{v P}=\mathbf{v}$ is a constant multiple of \mathbf{w}.
(b) $\mathbf{P c}=\mathbf{c}$, and any column vector \mathbf{x} such that $\mathbf{P x}=\mathbf{x}$ is a multiple of \mathbf{c}.

Definition: Fixed Vectors

- A row vector \mathbf{w} with the property $\mathbf{w} \mathbf{P}=\mathbf{w}$ is called a fixed row vector for \mathbf{P}.
- Similarly, a column vector \mathbf{x} such that $\mathbf{P x}=\mathbf{x}$ is called a fixed column vector for \mathbf{P}.

Example

Find the limiting vector \mathbf{w} for the Land of Oz .

Example

Find the limiting vector \mathbf{w} for the Land of Oz .

$$
\begin{aligned}
& \text { and } \\
& \quad\left(\begin{array}{lll}
w_{1}+w_{2}+w_{3}=1 \\
w_{1} & w_{2} & w_{3}
\end{array}\right)\left(\begin{array}{ccc}
1 / 2 & 1 / 4 & 1 / 4 \\
1 / 2 & 0 & 1 / 2 \\
1 / 4 & 1 / 4 & 1 / 2
\end{array}\right)=\left(\begin{array}{lll}
w_{1} & w_{2} & w_{3}
\end{array}\right) .
\end{aligned}
$$

Example

Find the limiting vector \mathbf{w} for the Land of Oz .

$$
\begin{aligned}
& \text { and } \\
& \quad\left(\begin{array}{lll}
w_{1}+w_{2}+w_{3}=1 \\
w_{1} & w_{2} & w_{3}
\end{array}\right)\left(\begin{array}{ccc}
1 / 2 & 1 / 4 & 1 / 4 \\
1 / 2 & 0 & 1 / 2 \\
1 / 4 & 1 / 4 & 1 / 2
\end{array}\right)=\left(\begin{array}{lll}
w_{1} & w_{2} & w_{3}
\end{array}\right) .
\end{aligned}
$$

$$
\begin{aligned}
w_{1}+w_{2}+w_{3} & =1, \\
(1 / 2) w_{1}+(1 / 2) w_{2}+(1 / 4) w_{3} & =w_{1}, \\
(1 / 4) w_{1}+(1 / 4) w_{3} & =w_{2}, \\
(1 / 4) w_{1}+(1 / 2) w_{2}+(1 / 2) w_{3} & =w_{3} .
\end{aligned}
$$

$$
\begin{aligned}
w_{1}+w_{2}+w_{3} & =1, \\
(1 / 2) w_{1}+(1 / 2) w_{2}+(1 / 4) w_{3} & =w_{1}, \\
(1 / 4) w_{1}+(1 / 4) w_{3} & =w_{2}, \\
(1 / 4) w_{1}+(1 / 2) w_{2}+(1 / 2) w_{3} & =w_{3} .
\end{aligned}
$$

The solution is

$$
\mathbf{w}=\left(\begin{array}{lll}
.4 & .2 & .4
\end{array}\right),
$$

Another method

- Assume that the value at a particular state, say state one, is 1 , and then use all but one of the linear equations from $\mathbf{w P}=\mathbf{w}$.
- This set of equations will have a unique solution and we can obtain \mathbf{w} from this solution by dividing each of its entries by their sum to give the probability vector \mathbf{w}.

Example (cont'd)

- Set $w_{1}=1$, and then solve the first and second linear equations from $\mathbf{w P}=\mathbf{w}$.

$$
\begin{aligned}
(1 / 2)+(1 / 2) w_{2}+(1 / 4) w_{3} & =1 \\
(1 / 4)+(1 / 4) w_{3} & =w_{2}
\end{aligned}
$$

- We obtain

$$
\left(\begin{array}{lll}
w_{1} & w_{2} & w_{3}
\end{array}\right)=\left(\begin{array}{lll}
1 & 1 / 2 & 1
\end{array}\right) .
$$

Equilibrium

- Suppose that our starting vector picks state s_{i} as a starting state with probability w_{i}, for all i.
- Then the probability of being in the various states after n steps is given by $\mathbf{w} \mathbf{P}^{n}=\mathbf{w}$, and is the same on all steps.
- This method of starting provides us with a process that is called "stationary."

Ergodic Markov Chains

Theorem. For an ergodic Markov chain, there is a unique probability vector \mathbf{w} such that $\mathbf{w} \mathbf{P}=\mathbf{w}$ and \mathbf{w} is strictly positive. Any row vector such that $\mathbf{v P}=\mathbf{v}$ is a multiple of \mathbf{w}. Any column vector \mathbf{x} such that $\mathbf{P} \mathbf{x}=\mathbf{x}$ is a constant vector.

The Ergodic Theorem

Theorem. Let \mathbf{P} be the transition matrix for an ergodic chain. Let \mathbf{A}_{n} be the matrix defined by

$$
\mathbf{A}_{n}=\frac{\mathbf{I}+\mathbf{P}+\mathbf{P}^{2}+\ldots+\mathbf{P}^{n}}{n+1} .
$$

Then $\mathbf{A}_{n} \rightarrow \mathbf{W}$, where \mathbf{W} is a matrix all of whose rows are equal to the unique fixed probability vector \mathbf{w} for \mathbf{P}.

Exercises

Which of the following matrices are transition matrices for regular Markov chains?

1. $\mathbf{P}=\left(\begin{array}{cc}.5 & .5 \\ 1 & 0\end{array}\right)$.
2. $\mathbf{P}=\left(\begin{array}{ccc}1 / 3 & 0 & 2 / 3 \\ 0 & 1 & 0 \\ 0 & 1 / 5 & 4 / 5\end{array}\right)$.
3. $\mathbf{P}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.

Consider the Markov chain with general 2×2 transition matrix

$$
\mathbf{P}=\left(\begin{array}{cc}
1-a & a \\
b & 1-b
\end{array}\right)
$$

1. Under what conditions is \mathbf{P} absorbing?
2. Under what conditions is \mathbf{P} ergodic but not regular?
3. Under what conditions is \mathbf{P} regular?

Find the fixed probability vector \mathbf{w} for the matrices in the previous exercise that are ergodic.

