Problem

Show that

$$
b(n, p, j)=\frac{p}{q}\left(\frac{n-j+1}{j}\right) b(n, p, j-1)
$$

for $j \geq 1$. Use this fact to determine the value or values of j which give $b(n, p, j)$ its greatest value.

Problem

Show that the number of ways that one can put n different objects into three boxes with a in the first, b in the second, and c in the third is $n!/(a!b!c!)$.

Problem

Prove that the probability of exactly n heads in $2 n$ tosses of a fair coin is given by the product of the odd numbers up to $2 n-1$ divided by the product of the even numbers up to $2 n$.

Conditional Probability

10/04/2005

Example

Three candidates A, B, and C are running for office. We decided that A and B have an equal chance of winning and C is only $1 / 2$ as likely to win as A . Let A be the event " A wins," B that " B wins," and C that " C wins." Hence, we assigned probabilities $P(A)=2 / 5$, $P(B)=2 / 5$, and $P(C)=1 / 5$.

Suppose that before the election is held, A drops out of the race. What are the values for $P(B \mid A)$ and $P(C \mid A)$?

Definition

Let $\Omega=\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{r}\right\}$ be the original sample space with distribution function $m\left(\omega_{j}\right)$ assigned. Suppose we learn that the event E has occurred.

- If a sample point ω_{j} is not in E, we want $m\left(\omega_{j} \mid E\right)=0$.
- For ω_{k} in E, we should have the same relative magnitudes that they had before we learned that E had occurred:

$$
m\left(\omega_{k} \mid E\right)=c m\left(\omega_{k}\right)
$$

But we must also have

$$
\sum_{E} m\left(\omega_{k} \mid E\right)=c \sum_{E} m\left(\omega_{k}\right)=1
$$

Thus,

$$
c=\frac{1}{\sum_{E} m\left(\omega_{k}\right)}=\frac{1}{P(E)} .
$$

Definition 1. The conditional distribution gven E is the distribution on Ω defined by

$$
m\left(\omega_{k} \mid E\right)=\frac{m\left(\omega_{k}\right)}{P(E)}
$$

for ω_{k} in E, and $m\left(\omega_{k} \mid E\right)=0$ for ω not in E.

Then, for a general event F,

$$
P(F \mid E)=\sum_{F \cap E} m\left(\omega_{k} \mid E\right)=\sum_{F \cap E} \frac{m\left(\omega_{k}\right)}{P(E)}=\frac{P(F \cap E)}{P(E)} .
$$

We call $P(F \mid E)$ the conditional probability of F occurring given that E occurs.

Example

Let us return to the example of rolling a die. Recall that F is the event $X=6$, and E is the event $X>4$. Note that $E \cap F$ is the event F. So, the above formula gives

$$
\begin{aligned}
P(F \mid E) & =\frac{P(F \cap E)}{P(E)} \\
& =\frac{1 / 6}{1 / 3} \\
& =\frac{1}{2}
\end{aligned}
$$

Example

We have two urns, I and II. Urn I contains 2 black balls and 3 white balls. Urn II contains 1 black ball and 1 white ball. An urn is drawn at random and a ball is chosen at random from it. We can represent the sample space of this experiment as the paths through a tree.

- Let B be the event "a black ball is drawn," and I the event "urn I is chosen." Then the branch weight $2 / 5$, which is shown on one branch in the figure, can now be interpreted as the conditional probability $P(B \mid I)$.
- What is $P(I \mid B)$?

Bayes Probabilities

We have just calculated the inverse probability that a particular urn was chosen, given the color of the ball. Such an inverse probability is called a Bayes probability.

The Monty Hall problem

Suppose you're on Monty Hall's Let's Make a Deal! You are given the choice of three doors, behind one door is a car, the others, goats. You pick a door, say 1, Monty opens another door, say 3, which has a goat. Monty says to you "Do you want to pick door 2?" Is it to your advantage to switch your choice of doors?

Question: What is the conditional probability that you win if you switch, given that you have chosen door 1 and that Monty has chosen door 3.

Placement
of car

Door chosen
by contestant

Door opened Path
by Monty probabilities

Problem

Assume that E and F are two events with positive probabilities. Show that if $P(E \mid F)=P(E)$, then $P(F \mid E)=P(F)$.

Problem

A die is rolled twice. What is the probability that the sum of the faces is greater than 7 , given that

1. the first outcome was a 4 ?
2. the first outcome was greater than 3 ?
3. the first outcome was a 1 ?
4. the first outcome was less than 5 ?
