Important Distributions

10/20/2005

Discrete Uniform Distribution

- All outcomes of an experiment are equally likely.
- If X is a random variable which represents the outcome of an experiment of this type, then we say that X is uniformly distributed.
- If the sample space S is of size n, where $0<n<\infty$, then the distribution function $m(\omega)$ is defined to be $1 / n$ for all $\omega \in S$.

Binomial Distribution

- The distribution of the random variable which counts the number of heads which occur when a coin is tossed n times, assuming that on any one toss, the probability that a head occurs is p.
- The distribution function is given by the formula

$$
b(n, p, k)=\binom{n}{k} p^{k} q^{n-k}
$$

where $q=1-p$.

Exercise

A die is rolled until the first time T that a six turns up.

1. What is the probability distribution for T ?
2. Find $P(T>3)$.
3. Find $P(T>6 \mid T>3)$.

Geometric Distribution

- Consider a Bernoulli trials process continued for an infinite number of trials; for example, a coin tossed an infinite sequence of times.
- Let T be the number of trials up to and including the first success. Then

$$
\begin{aligned}
& P(T=1)=p \\
& P(T=2)=q p \\
& P(T=3)=q^{2} p
\end{aligned}
$$

and in general,

$$
P(T=n)=q^{n-1} p
$$

Exercise

Cards are drawn, one at a time, from a standard deck; each card is replaced before the next one is drawn. Let X be the number of draws necessary to get an ace. Find $E(X)$.

Example

Suppose a line of customers waits for service at a counter. It is often assumed that, in each small time unit, either 0 or 1 new customers arrive at the counter. The probability that a customer arrives is p and that no customer arrives is $q=1-p$. Let T be the time until the next arrival What is the probability that no customer arrives in the next k time units, that is, for $P(T>k)$.

Negative Binomial Distribution

- Suppose we are given a coin which has probability p of coming up heads when it is tossed.
- We fix a positive integer k, and toss the coin until the k th head appears.
- Let X represent the number of tosses. When $k=1, X$ is geometrically distributed.
- For a general k, we say that X has a negative binomial distribution.
- What is the probability distribution $u(x, k, p)$ of X ?

Example

A fair coin is tossed until the second time a head turns up. The distribution for the number of tosses is $u(x, 2, p)$. What is the probability that x tosses are needed to obtain two heads.

The Poisson Distribution

- The Poisson distribution can be viewed as arising from the binomial distribution, when n is large and p is small.
- The Poisson distribution with parameter λ is obtained as a limit of binomial distributions with parameters n and p, where it was assumed that $n p=\lambda$, and $n \rightarrow \infty$.

$$
P(X=k) \approx \frac{\lambda^{k}}{k!} e^{-\lambda}
$$

Example

- A typesetter makes, on the average, one mistake per 1000 words. Assume that he is setting a book with 100 words to a page.
- Let S_{100} be the number of mistakes that he makes on a single page.
- Then the exact probability distribution for S_{100} would be obtained by considering S_{100} as a result of 100 Bernoulli trials with $p=$ $1 / 1000$.
- The expected value of S_{100} is $\lambda=100(1 / 1000)=.1$.
- The exact probability that $S_{100}=j$ is $b(100,1 / 1000, j)$, and the Poisson approximation is

$$
\frac{e^{-.1}(.1)^{j}}{j!}
$$

Exercise

The Poisson distribution with parameter $\lambda=.3$ has been assigned for the outcome of an experiment. Let X be the outcome function. Find $P(X=0), P(X=1)$, and $P(X>1)$.

Exercise

In a class of 80 students, the professor calls on 1 student chosen at random for a recitation in each class period. There are 32 class periods in a term.

1. Write a formula for the exact probability that a given student is called upon j times during the term.
2. Write a formula for the Poisson approximation for this probability. Using your formula estimate the probability that a given student is called upon more than twice.

Hypergeometric Distribution

- Suppose that we have a set of N balls, of which k are red and $N-k$ are blue.
- We choose n of these balls, without replacement, and define X to be the number of red balls in our sample.
- The distribution of X is called the hypergeometric distribution.
- Note that this distribution depends upon three parameters, namely N, k, and n.
- We will use the notation $h(N, k, n, x)$ to denote $P(X=x)$.
- The distribution function is

$$
h(N, k, n, x)=\frac{\binom{k}{x}\binom{N-k}{n-x}}{\binom{N}{n}} .
$$

Example

A bridge deck has 52 cards with 13 cards in each of four suits: spades, hearts, diamonds, and clubs. A hand of 13 cards is dealt from a shuffled deck. Find the probability that the hand has

1. a distribution of suits 4, 4, 3, 2 (for example, four spades, four hearts, three diamonds, two clubs).
2. a distribution of suits 5, 3, 3, 2 .
