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• An intuitive way to view the probability of a certain outcome is
the frequency with which that outcome occurs in the long run.

• We defined probability mathematically as a value of a distribution
function for the random variable representing the experiment.

• The Law of Large Numbers shows that this model is consistent
with the frequency interpretation of probability.
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Chebyshev Inequality

Theorem. Let X be a discrete random variable with expected value
µ = E(X), and let ε > 0 be any positive real number. Then

P (|X − µ| ≥ ε) ≤ V (X)
ε2

.

Proof. Let m(x) denote the distribution function of X.

P (|X − µ| ≥ ε) =
∑

|x−µ|≥ε

m(x) .

P (|X − µ| ≥ ε) =
∑

|x−µ|≥ε

m(x) .
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Example

• Let X by any random variable with E(X) = µ and V (X) = σ2.

• Then, if ε = kσ, Chebyshev’s Inequality states that

P (|X − µ| ≥ kσ) ≤ σ2

k2σ2
=

1
k2

.

• Thus, for any random variable, the probability of a deviation from
the mean of more than k standard deviations is ≤ 1/k2.
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• Chebyshev’s Inequality is the best possible inequality in the sense
that, for any ε > 0, it is possible to give an example of a random
variable for which Chebyshev’s Inequality is in fact an equality.

• Given ε > 0, choose X with distribution

pX =
( −ε −ε

1/2 1/2

)
.

Then E(X) = 0, V (X) = ε2, and

P (|X − µ| ≥ ε) =
V (X)

ε2
= 1 .
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Law of Large Numbers

Theorem. Let X1, X2, . . . , Xn be an independent trials process,
with finite expected value µ = E(Xj) and finite variance σ2 =
V (Xj). Let Sn = X1 + X2 + · · ·+ Xn. Then for any ε > 0,

P

(∣∣∣∣
Sn

n
− µ

∣∣∣∣ ≥ ε

)
→ 0

as n →∞. Equivalently,

P

(∣∣∣∣
Sn

n
− µ

∣∣∣∣ < ε

)
→ 1

as n →∞.
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Proof

• Since X1, X2, . . . , Xn are independent and have the same distri-
butions,

V (Sn) = nσ2 ,

V (
Sn

n
) =

σ2

n
.

E(
Sn

n
) = µ .

• By Chebyshev’s Inequality, for any ε > 0,

P

(∣∣∣∣
Sn

n
− µ

∣∣∣∣ ≥ ε

)
≤ σ2

nε2
.
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Law of Averages

• Consider the important special case of Bernoulli trials with proba-
bility p for success.

• Let Xj = 1 if the jth outcome is a success and 0 if it is a failure.

• Then Sn = X1 + X2 + · · ·+ Xn is the number of successes in n
trials and µ = E(X1) = p.

• The Law of Large Numbers states that for any ε > 0

P

(∣∣∣∣
Sn

n
− p

∣∣∣∣ < ε

)
→ 1

as n →∞.
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Die Rolling

• Consider n rolls of a die. Let Xj be the outcome of the jth roll.

• Then Sn = X1 + X2 + · · ·+ Xn is the sum of the first n rolls.

• This is an independent trials process with E(Xj) = 7/2.

• Thus, for any ε > 0

P

(∣∣∣∣
Sn

n
− 7

2

∣∣∣∣ ≥ ε

)
→ 0

as n →∞.
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Problem

A fair coin is tossed 100 times. The expected number of heads
is 50, and the standard deviation for the number of heads is (100 ·
1/2 · 1/2)1/2 = 5. What does Chebyshev’s Inequality tell you about
the probability that the number of heads that turn up deviates from
the expected number 50 by three or more standard deviations (i.e.,
by at least 15)?
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Problem

Let X be a random variable with E(X) = 0 and V (X) = 1.
What integer value k will assure us that P (|X| ≥ k) ≤ .01?
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Problem

Let Sn be the number of successes in n Bernoulli trials with
probability p for success on each trial. Find the maximum possible
value for p(1− p) if 0 < p < 1. Using this result and the fact that
for any ε > 0

P

(∣∣∣∣
Sn

n
− p

∣∣∣∣ ≥ ε

)
≤ p(1− p)

nε2
,

show that the estimate

P

(∣∣∣∣
Sn

n
− p

∣∣∣∣ ≥ ε

)
≤ 1

4nε2
.
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Problem

We have two coins: one is a fair coin and the other is a coin that
produces heads with probability 3/4. One of the two coins is picked
at random, and this coin is tossed n times. Let Sn be the number
of heads that turns up in these n tosses. Does the Law of Large
Numbers allow us to predict the proportion of heads that will turn up
in the long run? After we have observed a large number of tosses,
can we tell which coin was chosen? How many tosses suffice to make
us 95 percent sure?
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