Instructions. Show your work and explain carefully, except for short-answer problems. Calculators and other electronic aids are not permitted. Answers involving the number e may be left in that form, as in " $a e^{b}$ " or " $1-a e^{b}$ ", with numerical values for a, b. The first problem is worth 12 points, the others 11 points each.

1. Which of the following are distribution functions? (hint: at least one is not)
(a) $m(j)=\frac{1}{10}$ for j an integer, $0 \leq j \leq 10$.

No, the sum of the m-values is $11 / 10 \neq 1$.
(b) $m(j)=\binom{73}{j}\left(\frac{1}{4}\right)^{j}\left(\frac{3}{4}\right)^{73-j}$ for j an integer, $0 \leq j \leq 73$.

Yes, this is the binomial distribution with $n=73$.
(c) $m(j)=j / 3$ for j an integer, $1 \leq j \leq 2$.

Yes, the m-values are $1 / 3$ and $2 / 3$, which are nonnegative and add to 1 .
(d) $m(j)=\frac{2^{j}}{j!} e^{-2}$ for j a non-negative integer.

Yes, this is the Poisson distribution with $\lambda=2$.
2. Let X_{1}, X_{2} be independent, uniform random variables on $\{1,2, \ldots, 10\}$. Find

$$
P\left(\text { the maximum of } X_{1}, X_{2}\right. \text { is at least 5). }
$$

It's easier to compute the complementary probability, which is the event that both X_{1} and X_{2} are ≤ 4. Since they're independent, this probability is $(4 / 10)^{2}$. So, the answer is $1-(4 / 10)^{2}=0.84$.
3. The number of hours a light bulb lasts is assumed to follow a geometric distribution with mean 10,000 hours of use. What is the approximate probability it fails in the first 5,000 hours of use?
The geometric distribution with parameter p is $m(k)=q^{k-1} p$, where k is a positive integer, $q=1-p$, and $0<p<1$. The mean of this distribution is $1 / p$ (either remember this, or work it out). So, we have $p=1 / 10,000$. The probability that it fails for some $k \leq 5000$ is

$$
\sum_{k=1}^{5000} q^{k-1} p
$$

This is the exact probability. To estimate it, we sum the geometric progression to get

$$
\frac{q^{5000}-1}{q-1} p=1-q^{5000}=1-\left(1-\frac{1}{10,000}\right)^{5000}
$$

Since $(1-1 / n)^{n}$ tends to e^{-1} as n tends to infinity, the high power here, which is

$$
\left(\left(1-\frac{1}{10,000}\right)^{10,000}\right)^{1 / 2}
$$

should be close to $\mathrm{e}^{-1 / 2}$. Thus, the probability is approximately $1-\mathrm{e}^{-1 / 2}$. (The exact probability is $0.393485 \ldots$, while $1-\mathrm{e}^{-1 / 2}=0.393469 \ldots$)
4. A good typist averages a single typo in 1000 words. A chapter being typed has 10,000 words. Assuming a Poisson distribution, what is the probability there are at most 2 typos in the chapter?
The parameter λ in this Poisson distribution is the average number of typos in 10,000 words, which is 10 . Thus, the probability is

$$
\frac{10^{0}}{0!} \mathrm{e}^{-10}+\frac{10^{1}}{1!} \mathrm{e}^{-10}+\frac{10^{2}}{2!} \mathrm{e}^{-10}=61 \mathrm{e}^{-10} \quad(=0.002769 \ldots)
$$

5. Suppose X_{1}, X_{2} are independent random variables and c is a constant. If the statement is always true, write True, otherwise write False.
(a) $E\left(X_{1}+c X_{2}\right)=E\left(X_{1}\right)+c E\left(X_{2}\right)$.

True. Expectation is linear, and one does not need that X_{1}, X_{2} are independent.
(b) $V\left(X_{1}-X_{2}\right)=V\left(X_{1}\right)+V\left(X_{2}\right)$.

True. If X_{1}, X_{2} are independent, so are $X_{1},-X_{2}$, so $V\left(X_{1}-X_{2}\right)=V\left(X_{1}\right)+V\left(-X_{2}\right)$. We always have $V(c X)=c^{2} V(X)$, so applying this with $c=-1$, we have the statement.
6. Flip a fair coin 3 times and win j dollars if the longest streak of consecutive heads or tails has length j. What is the expected value of this game and what is the variance?
Of the 8 possibilities for 3 coin flips, 2 have longest run 1 (HTH and THT), 2 have longest run 3 , and the remaining 4 have longest run 2 . So the expectation is

$$
1 \cdot \frac{1}{4}+2 \cdot \frac{1}{2}+3 \cdot \frac{1}{4}=2,
$$

or $\$ 2$. The mean square is

$$
1^{2} \cdot \frac{1}{4}+2^{2} \cdot \frac{1}{2}+3^{2} \cdot \frac{1}{4}=4.5
$$

so, using the result that the variance is the mean square minus the square mean, the variance is $4.5-2^{2}=.5$.
7. Prove that if X is a random variable, then $E\left(X^{2}\right) \geq E(X)^{2}$.

Solution 1. The definition of variance is $E\left((X-\mu)^{2}\right)$, where $\mu=E(X)$. Thus,

$$
V(X)=\sum_{x}(x-\mu)^{2} P(X=x)
$$

The two factors in each summand are both nonnegative, so therefore the entire sum is nonnegative, i.e., $V(X) \geq 0$. We learned that $V(X)=E\left(X^{2}\right)-E(X)^{2}$. Thus, $E\left(X^{2}\right)-E(X)^{2} \geq 0$, which is equivalent to the inequality we are asked to prove.
Solution 2. Several students tried to do this problem without using variance. It is possible, but a little tricky. Here's a proof using the Cauchy-Schwarz inequality. This asserts that

$$
\left|\sum_{i=1}^{n} a_{i} b_{i}\right| \leq\left(\sum_{i=1}^{n} a_{i}^{2}\right)^{1 / 2}\left(\sum_{i=1}^{n} b_{i}^{2}\right)^{1 / 2}
$$

This easily generalizes to convergent sums. We apply this inequality with the numbers a_{i} running over $x \sqrt{P(X=x)}$ and the numbers b_{i} running over the numbers $\sqrt{P(X=x)}$. Thus,

$$
\begin{aligned}
|E(X)| & =\left|\sum_{x} x P(X=x)\right|=\left|\sum_{x} x \sqrt{P(X=x)} \cdot \sqrt{P(X=x)}\right| \\
& \leq\left(\sum_{x} x^{2} P(X=x)\right)^{1 / 2}\left(\sum_{x} P(X=x)\right)^{1 / 2}
\end{aligned}
$$

The first sum just above is $E\left(X^{2}\right)$ and the second sum is 1 . So, squaring the inequality, we get $E(X)^{2} \leq E\left(X^{2}\right)$.
8. If $m_{1}(x)$ is uniform on $\{1,2, \ldots, 6\}$ and $m_{2}(x)$ is uniform on $\{1,2, \ldots, 10\}$, find

$$
\left(m_{1} * m_{2}\right)(8)
$$

We learned about convolution in the context of adding two random variables. This problem can be thought of as rolling two dice, one with 6 faces with numbers 1 to 6 and the other with 10 faces with numbers 1 to 10 . We are asked for the probability of rolling 8. Each choice of i on the first die and j on the second die has probability $\frac{1}{6} \cdot \frac{1}{10}=\frac{1}{60}$. There are 6 ways to make 8 , namely $i+(8-i)$ for $i=1,2, \ldots, 6$. So, the answer is $6 \cdot \frac{1}{60}=\frac{1}{10}$.
9. What does the Law of Large Numbers have to say about the probability of getting at least 75 heads when flipping a fair coin 100 times?

The Law of Large Numbers is both a qualitative statement and a quantitative statement. It says that if you add identically distributed independent random variables X_{1}, \ldots, X_{n}, each with mean μ and variance σ^{2}, then for each $\epsilon>0$,

$$
P\left(\left|A_{n}-\mu\right| \geq \epsilon\right) \leq \frac{\sigma^{2}}{n \epsilon^{2}}
$$

where $A_{n}=S_{n} / n=\left(X_{1}+\cdots+X_{n}\right) / n$. Thus, as $n \rightarrow \infty$, this probability approaches 0 . Specifically in our case we have $n=100, \sigma^{2}=\frac{1}{4}$, and $\epsilon=\frac{25}{100}=\frac{1}{4}$. Thus,

$$
P\left(\left|A_{100}-\frac{1}{2}\right| \geq \frac{1}{4}\right) \leq \frac{1 / 4}{100(1 / 4)^{2}}=\frac{4}{100}=0.04
$$

To eke a little more out of this, you could note that the inequality $\left|A_{n}-\mu\right| \geq \epsilon$ encompasses the two symmetric cases $A_{n}-\mu \geq \epsilon$ and $A_{n}-\mu \leq-\epsilon$. (The two are symmetric in the binomial distribution, maybe not in general.) So we can divide the answer 0.04 by 2 to get 0.02 as an upper bound for the probability of getting at least 75 heads.

