Math 20, Test 2, May 12, 2015

Instructions. Show your work and explain carefully, except for short-answer problems. Calculators and other electronic aids are not permitted. Answers involving the number e may be left in that form, as in " ae^{b} " or " $1 - ae^{b}$ ", with numerical values for a, b. The first problem is worth 12 points, the others 11 points each.

1. Which of the following are distribution functions? (hint: at least one is not)

- (d) $m(j) = \frac{2^{j}}{j!}e^{-2}$ for j a non-negative integer. Yes, this is the Poisson distribution with $\lambda = 2$.
- 2. Let X_1, X_2 be independent, uniform random variables on $\{1, 2, \ldots, 10\}$. Find

 $P(\text{the maximum of } X_1, X_2 \text{ is at least } 5).$

It's easier to compute the complementary probability, which is the event that both X_1 and X_2 are ≤ 4 . Since they're independent, this probability is $(4/10)^2$. So, the answer is $1 - (4/10)^2 = 0.84$.

3. The number of hours a light bulb lasts is assumed to follow a geometric distribution with mean 10,000 hours of use. What is the approximate probability it fails in the first 5,000 hours of use?

The geometric distribution with parameter p is $m(k) = q^{k-1}p$, where k is a positive integer, q = 1 - p, and 0 . The mean of this distribution is <math>1/p (either remember this, or work it out). So, we have p = 1/10,000. The probability that it fails for some $k \leq 5000$ is

$$\sum_{k=1}^{5000} q^{k-1} p$$

This is the exact probability. To estimate it, we sum the geometric progression to get

$$\frac{q^{5000} - 1}{q - 1}p = 1 - q^{5000} = 1 - \left(1 - \frac{1}{10,000}\right)^{5000}$$

Since $(1 - 1/n)^n$ tends to e^{-1} as n tends to infinity, the high power here, which is

$$\left(\left(1 - \frac{1}{10,000} \right)^{10,000} \right)^{1/2}$$

should be close to $e^{-1/2}$. Thus, the probability is approximately $1 - e^{-1/2}$. (The exact probability is 0.393485..., while $1 - e^{-1/2} = 0.393469...$.)

4. A good typist averages a single typo in 1000 words. A chapter being typed has 10,000 words. Assuming a Poisson distribution, what is the probability there are at most 2 typos in the chapter?

The parameter λ in this Poisson distribution is the average number of typos in 10,000 words, which is 10. Thus, the probability is

$$\frac{10^{0}}{0!}e^{-10} + \frac{10^{1}}{1!}e^{-10} + \frac{10^{2}}{2!}e^{-10} = 61e^{-10} \quad (= 0.002769\dots).$$

- 5. Suppose X_1, X_2 are independent random variables and c is a constant. If the statement is always true, write True, otherwise write False.
 - (a) $E(X_1 + cX_2) = E(X_1) + cE(X_2)$. True. Expectation is linear, and one does not need that X_1, X_2 are independent.
 - (b) $V(X_1 X_2) = V(X_1) + V(X_2)$. True. If X_1, X_2 are independent, so are $X_1, -X_2$, so $V(X_1 - X_2) = V(X_1) + V(-X_2)$. We always have $V(cX) = c^2 V(X)$, so applying this with c = -1, we have the statement.
- 6. Flip a fair coin 3 times and win j dollars if the longest streak of consecutive heads or tails has length j. What is the expected value of this game and what is the variance?

Of the 8 possibilities for 3 coin flips, 2 have longest run 1 (HTH and THT), 2 have longest run 3, and the remaining 4 have longest run 2. So the expectation is

$$1 \cdot \frac{1}{4} + 2 \cdot \frac{1}{2} + 3 \cdot \frac{1}{4} = 2,$$

or \$2. The mean square is

$$1^2 \cdot \frac{1}{4} + 2^2 \cdot \frac{1}{2} + 3^2 \cdot \frac{1}{4} = 4.5,$$

so, using the result that the variance is the mean square minus the square mean, the variance is $4.5 - 2^2 = .5$.

7. Prove that if X is a random variable, then $E(X^2) \ge E(X)^2$. Solution 1. The definition of variance is $E((X - \mu)^2)$, where $\mu = E(X)$. Thus,

$$V(X) = \sum_{x} (x - \mu)^2 P(X = x).$$

The two factors in each summand are both nonnegative, so therefore the entire sum is nonnegative, i.e., $V(X) \ge 0$. We learned that $V(X) = E(X^2) - E(X)^2$. Thus, $E(X^2) - E(X)^2 \ge 0$, which is equivalent to the inequality we are asked to prove.

Solution 2. Several students tried to do this problem without using variance. It is possible, but a little tricky. Here's a proof using the Cauchy–Schwarz inequality. This asserts that

$$\left|\sum_{i=1}^{n} a_{i} b_{i}\right| \leq \left(\sum_{i=1}^{n} a_{i}^{2}\right)^{1/2} \left(\sum_{i=1}^{n} b_{i}^{2}\right)^{1/2}$$

This easily generalizes to convergent sums. We apply this inequality with the numbers a_i running over $x\sqrt{P(X=x)}$ and the numbers b_i running over the numbers $\sqrt{P(X=x)}$. Thus,

$$|E(X)| = \left|\sum_{x} xP(X=x)\right| = \left|\sum_{x} x\sqrt{P(X=x)} \cdot \sqrt{P(X=x)}\right|^{1/2}$$
$$\leq \left(\sum_{x} x^2 P(X=x)\right)^{1/2} \left(\sum_{x} P(X=x)\right)^{1/2}.$$

The first sum just above is $E(X^2)$ and the second sum is 1. So, squaring the inequality, we get $E(X)^2 \leq E(X^2)$.

8. If $m_1(x)$ is uniform on $\{1, 2, ..., 6\}$ and $m_2(x)$ is uniform on $\{1, 2, ..., 10\}$, find

$$(m_1 * m_2)(8).$$

We learned about convolution in the context of adding two random variables. This problem can be thought of as rolling two dice, one with 6 faces with numbers 1 to 6 and the other with 10 faces with numbers 1 to 10. We are asked for the probability of rolling 8. Each choice of i on the first die and j on the second die has probability $\frac{1}{6} \cdot \frac{1}{10} = \frac{1}{60}$. There are 6 ways to make 8, namely i + (8 - i) for $i = 1, 2, \ldots, 6$. So, the answer is $6 \cdot \frac{1}{60} = \frac{1}{10}$.

9. What does the Law of Large Numbers have to say about the probability of getting at least 75 heads when flipping a fair coin 100 times?

The Law of Large Numbers is both a qualitative statement and a quantitative statement. It says that if you add identically distributed independent random variables X_1, \ldots, X_n , each with mean μ and variance σ^2 , then for each $\epsilon > 0$,

$$P(|A_n - \mu| \ge \epsilon) \le \frac{\sigma^2}{n\epsilon^2},$$

where $A_n = S_n/n = (X_1 + \dots + X_n)/n$. Thus, as $n \to \infty$, this probability approaches 0. Specifically in our case we have n = 100, $\sigma^2 = \frac{1}{4}$, and $\epsilon = \frac{25}{100} = \frac{1}{4}$. Thus,

$$P\left(\left|A_{100} - \frac{1}{2}\right| \ge \frac{1}{4}\right) \le \frac{1/4}{100(1/4)^2} = \frac{4}{100} = 0.04.$$

To eke a little more out of this, you could note that the inequality $|A_n - \mu| \ge \epsilon$ encompasses the two symmetric cases $A_n - \mu \ge \epsilon$ and $A_n - \mu \le -\epsilon$. (The two are symmetric in the binomial distribution, maybe not in general.) So we can divide the answer 0.04 by 2 to get 0.02 as an upper bound for the probability of getting at least 75 heads.