Math 20: Discrete Probability

Final Exam Solutions

December 3, 2000
1 Consider a Bernoulli trials process with probability p for success (and probability $q=1-p$ for failure). Let S_{n} denote the total number of successes in the first n trials, and let $A_{n}=S_{n} / n$ denote the average number of successes in the first n trials.
(a) Show that $E\left(S_{n}\right)=n p$ and $E\left(A_{n}\right)=p$.

Solution Let X_{i} be the random variable whose value is 1 if the $i^{\text {th }}$ trial is a success and 0 if it is a failure. Then $S_{n}=X_{1}+\cdots+X_{n}$. We have $E\left(X_{i}\right)=1 \cdot p+0 \cdot q=p$ and so
$E\left(S_{n}\right)=E\left(X_{1}+\cdots+X_{n}\right)=E\left(X_{1}\right)+\cdots+E\left(X_{n}\right)=p+\cdots+p=n p$.
From this we get $E\left(A_{n}\right)=E\left(\frac{1}{n} S_{n}\right)=\frac{1}{n} E\left(S_{n}\right)=p$.
(b) Show that $V\left(S_{n}\right)=n p q$ and $V\left(A_{n}\right)=\frac{p q}{n}$.

Solution The variance of X_{i} is $V\left(X_{i}\right)=E\left(X_{i}^{2}\right)-E\left(X_{i}\right)^{2}=E\left(X_{i}^{2}\right)-$ p^{2}. Since $X_{i}^{2}=X_{i}$, we have $V\left(X_{i}\right)=p-p^{2}=p(1-p)=p q$. Since the X_{i} are all independent, we can use the sum rule to calculate

$$
V\left(S_{n}\right)=V\left(X_{1}+\cdots+X_{n}\right)=V\left(X_{1}\right)+\cdots+V\left(X_{n}\right)=p q+\cdots+p q=n p q .
$$

From this we get $V\left(A_{n}\right)=V\left(\frac{1}{n} S_{n}\right)=\left(\frac{1}{n}\right)^{2} V\left(S_{n}\right)=\frac{p q}{n}$.
2 In the current presidential election, 100, 000, 000 people voted, and Gore came out with about 200,000 more votes. Assume that the voting is a Bernoulli trials with probability p that a given voter votes for Gore. If $p=\frac{1}{2}$, estimate the probability that Gore's total would be as high as it is (i.e. greater than or equal to $50,100,000$).

Solution Let S be the total number of Gore voters. We need to determine $P(S-50,000,000>100,000)$. For this, we need to know the standard deviation, which is

$$
D(S)=\sqrt{V(S)}=\sqrt{100,000,000 \cdot \frac{1}{2} \cdot \frac{1}{2}}=5,000
$$

by Problem 1. Since 100,000 is 20 standard deviations, the probability that Gore's total would be that high is essentially zero.

3 More voting! A popular politician runs for Congress. If she has never been elected, then the probability that she will be elected is $\frac{1}{2}$ (and so the probability that she remains unelected is $\frac{1}{2}$ and she can run again next time, in two years). If she has already been elected (and is currently in office) then her probabiltiy of being re-elected is $\frac{9}{10}$; the probability that she loses is $\frac{1}{10}$. If she loses, then she will never be re-elected again, so she retires.
(a) Show how to think of this as a Markov chain. That is, write down the states and the transition matrix. Explain why the Markov chain is an absorbing one.

Solution Let the states be $S=\{N, E, R\}$ in this order, standing for Never elected, Elected, and Retired. Then the transition matrix is

$$
P=\left(\begin{array}{ccc}
\frac{1}{2} & \frac{1}{2} & 0 \\
0 & \frac{9}{10} & \frac{1}{10} \\
0 & 0 & 1
\end{array}\right)
$$

For future reference, let's find our related matrices:
$Q=\left(\begin{array}{cc}\frac{1}{2} & \frac{1}{2} \\ 0 & \frac{9}{10}\end{array}\right), I-Q=\left(\begin{array}{cc}\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{1}{10}\end{array}\right), \quad$ so $\quad N=(I-Q)^{-1}=\left(\begin{array}{cc}2 & 10 \\ 0 & 10\end{array}\right)$, as you can check.
(b) If this is the first year that she runs for Congress, in how many years should she expect to retire?

Solution The matrix

$$
N c=\left(\begin{array}{ll}
2 & 10 \\
0 & 10
\end{array}\right)\binom{1}{1}=\binom{12}{10}
$$

gives the answer: if she is in state N, then she should expect to go through 12 iterations, 24 years, before retiring.

4 The following matrix is the transition matrix for an absorbing Markov chain. The first transient state is state S , the second is state T .

$$
P=\left(\begin{array}{cccccc}
0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 & 0 \\
\frac{2}{5} & 0 & 0 & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

(a) If the chain starts at state S how many steps do you expect it will it take until the chain lands in an absorbing state?

Solution The related matrices are

$$
Q=\left(\begin{array}{cc}
0 & \frac{1}{3} \\
\frac{2}{5} & 0
\end{array}\right), \quad R=\left(\begin{array}{cccc}
\frac{1}{3} & \frac{1}{3} & 0 & 0 \\
0 & \frac{1}{5} & \frac{1}{5} & \frac{1}{5}
\end{array}\right)
$$

and

$$
N=(I-Q)^{-1}=\left(\begin{array}{cc}
1 & -\frac{1}{3} \\
-\frac{2}{5} & 1
\end{array}\right)^{-1}=\frac{15}{13}\left(\begin{array}{cc}
1 & \frac{1}{3} \\
\frac{2}{5} & 1
\end{array}\right) .
$$

To answer the question, we compute

$$
\mathbf{t}=N c=\frac{15}{13}\left(\begin{array}{ll}
1 & \frac{1}{3} \\
\frac{2}{5} & 1
\end{array}\right)\binom{1}{1}=\binom{\frac{20}{13}}{\frac{21}{13}} .
$$

So if we start in state S, we expect to be absorbed in $\frac{20}{13}$ steps.
(b) Again assuming that the chain starts in state S, find the likelihood of being absorbed in any given absorbing state.

Solution We need to compute the matrix

$$
B=N R=\frac{15}{13}\left(\begin{array}{cc}
1 & \frac{1}{3} \\
\frac{2}{5} & 1
\end{array}\right)\left(\begin{array}{cccc}
\frac{1}{3} & \frac{1}{3} & 0 & 0 \\
0 & \frac{1}{5} & \frac{1}{5} & \frac{1}{5}
\end{array}\right)
$$

which is equal to

$$
B=\left(\begin{array}{cccc}
\frac{5}{13} & \frac{6}{13} & \frac{1}{13} & \frac{1}{13} \\
\frac{2}{13} & \frac{5}{13} & \frac{3}{13} & \frac{3}{13}
\end{array}\right) .
$$

The top row shows the probabilities of ending in any given absorbing state given that we start in state S.
(c) Suppose we start in state S with probability $\frac{1}{3}$ and in state T with probability $\frac{2}{3}$. Find the likelihood of being in any given state after two iterations.

Solution We start with probabilty vector $w^{(0)}=\left(\begin{array}{llllll}\frac{1}{3} & \frac{2}{3} & 0 & 0 & 0 & 0\end{array}\right)$ and we need to find

$$
w^{(2)}=w^{(0)} P^{2}=\left(\begin{array}{llllll}
\frac{1}{3} & \frac{2}{3} & 0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{cccccc}
0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 & 0 \\
\frac{2}{5} & 0 & 0 & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)^{2}
$$

which is equal to

$$
w^{(2)}=\left(\begin{array}{llllll}
\frac{2}{45} & \frac{4}{45} & \frac{9}{45} & \frac{16}{45} & \frac{7}{45} & \frac{7}{45}
\end{array}\right) .
$$

5 Give short answers to the following questions.
(a) If you toss a fair coin n times (where n is HUGE), does the Law of Large Numbers tell you that the total number of heads will differ from $\frac{n}{2}$ by no more than 1000 ?

Solution No. It says that the average number of heads will be close to $\frac{n}{2}$, but the actual number of heads might far away from $\frac{n}{2}$.
(b) Let S_{n} be the number of heads in n tosses of a fair coin. Find

$$
\lim _{n \rightarrow \infty} P\left(S_{n}<\frac{n}{2}+\sqrt{n}\right) .
$$

Solution The standard deviation of S_{n} is $\frac{1}{2} \sqrt{n}$, so we are asking for the probability that S_{n} is no more than 2 standard deviations from the mean. By the Central Limit Theorem, the answer is (roughly) $\frac{1}{2}+0.4772=0.9772$.
(c) Let S_{n} be the number of heads in n tosses of a fair coin. Find

$$
\lim _{n \rightarrow \infty} P\left(S_{n}<\frac{n}{2}+\sqrt[4]{n}\right)
$$

Solution Now we are asking for the probability that S_{n} is no more than $\frac{1}{2 \sqrt[4]{n}}$ standard deviations away from the mean. Since this number goes to 0 as $n \rightarrow \infty$, the limit of the probabilties is $\frac{1}{2}$.
(d) Is this a cool class or what?

Solution Yes it is!

6 You roll a fair die 600 times, so you expect five to come up 100 times. Find a number x so that the chances of there being between $100-x$ and $100+x$ is roughly 0.9 .
Solution Let X be the total number of fives that come up. We need to find x so that

$$
P(|S-100| \geq x) \leq \frac{1}{10}
$$

A look at the table shows that we need x to be approximately 1.65 standard deviations. The standard deviation of S is

$$
D(S)=\sqrt{n p q}=\sqrt{600 \cdot \frac{1}{6} \cdot \frac{5}{6}} \cong 9.129
$$

so $x \cong(1.65)(9.129) \cong 15$.

