Practice Midterm Exam
 Math 20

October 2014

Name: \qquad

Please read the following instructions before starting the exam:

- This exam is closed book. You may not give or receive any help during the exam, though you may ask the instructors for clarification if necessary.
- Be sure to show all work whenever possible. Even if your final answer is incorrect, an appropriate amount of partial credit can be assigned.
- Please circle or otherwise indicate your final answer, if possible.
- The test has a total of 8 questions, worth a total of 100 points. Point values are indicated for each question.
- You will have two hours from the start of the exam to complete it.
- Good luck!

HONOR STATEMENT: I have neither given nor received help on this exam, and I attest that all the answers are my own work.

SIGNATURE:

This page is for grading purposes only

Problem	Points
1	
2	
3	
4	
5	
6	
7	
8	
Total	
2	

1. Multiple choice. Circle the correct answer to each question. [5 points each, no partial credit].

Let random variables X, Y each be picked from $[0,1]$ with uniform density. Which of the following events is independent of $x<y$?
(a) $(x-1)^{2}+y^{2} \leq 1$
(b) $x^{2}+y^{2} \leq 1$
(c) $y<2 x$
(d) $y<x$

The best line of attack for a question like that is to draw the unit square:

Which is the correct Stirling's Formula?
(a) $n!\sim(n e)^{-n} \sqrt{2 \pi n}$
(b) $n!\sim n^{n} e^{-n} \sqrt{2 \pi n}$
(c) $n!\sim(n e)^{-n} \sqrt{4 \pi n}$
(d) $n!\sim n^{n} e^{-n} \sqrt{4 \pi n}$

You are about to play a racing game against your friend, and you agree to play 6 games. He's been practicing a lot more, so in any single game, the probability that you win is 0.45 , and the probability that your friend wins is 0.55 . What is the chance you win at least 4 times?
(a) $0.45^{4} 0.55^{2}+0.45^{5} 0.55+0.45^{6}$
(b) $\binom{6}{4} 0.45^{4} 0.55^{2}$
(c) $\binom{6}{4} 0.45^{4} 0.55^{2}+\binom{6}{5} 0.45^{5} 0.55+0.45^{6}$
(d) 0.45

$$
P(\geq 4)=P(4)+P(5)+P(6)=\binom{6}{4} 0.45^{4} 0.55^{2}+\binom{6}{5} 0.45^{5} 0.55+0.45^{6}
$$

Pick a point on a circular target with unit radius in the following way: pick a number r from $(0,1)$ uniformly at random, and a number θ from $(0,2 \pi)$ uniformly at random. The chosen point has polar coordinates (r, θ). What is the probability that this point is within distance 0.25 from the edge of the target?
(a) $1 / \sqrt{2}$
(b) $1 / 2$
(c) $1 / 4$
(d) $1 / 2 \sqrt{2}$

It doesn't matter what the angle θ is, we are within 0.25 from the edge of the atrget if an only if $0.75<r<1$. Since r is picked uniformly at random from $(0,1)$, the probability of that happening is $1 / 4$.
2. Let the random variable X be the number of rolls of a six-sided die until, and including, the first time 6 comes up.

- What is the probability distribution of X ? [5 points]
- What is $\mathbb{E}[X]$? [5 points]

For any $i \leq 1, m(i)$ is:

$$
m(i)=\frac{1}{6}\left(\frac{5}{6}\right)^{i-1}
$$

since this means that 6 doesn not come up in any of the rolls $1, \ldots, i-1$ and it does come up on the i th roll.
$E(X)=p \times 1+(1-p)(1+E(X))=1+(1-p) E(X)$
$(1-1+p) E(X)=1$
$E(X)=1 / p=6$
3. Find the cumulative probability distributions $F(x)=P[X \leq x]$ for each of the following probability densities: [15 points]

- $f_{1}(x)=\lambda e^{-\lambda x}, x \in(0, \infty)$
- $f_{2}(x)=1 / a, x \in(0, a)$
- $f_{3}(x)=1 / x^{2}, x \in(1, \infty)$

$$
\begin{gathered}
\left.P_{[} X \leq x\right]=\int_{0}^{x} \lambda e^{-\lambda t} d t=\lambda\left[\frac{e^{-\lambda t}}{-\lambda}\right]_{0}^{x}=\left[-e^{-\lambda t}\right]=1-e^{-\lambda x} \\
P_{2}[X \leq x]=\int_{0}^{x} \frac{1}{a} d t=\frac{t}{a} \\
P_{3}[X \leq x]=\int_{1}^{x} \frac{1}{t^{2}} d t=\left[\frac{-1}{t}\right]_{1}^{x}=1-\frac{1}{x}
\end{gathered}
$$

4. You throw $6 n$ six-sided dice. What is the probability that each of $\{1,2,3,4,5,6\}$ appears exactly n times? [10 points]

Consider all the possible results of throwing $6 n$ six-sided dice. There are $6^{6 n}$ of them. How many are there such that there are exactly n of each number? There are $\binom{6 n}{n}$ ways to pick n dice to have 1 on them. Then there are $\binom{(5 n}{n}$ ways to pick another n dice to have 2 on them. Then there are $\binom{4 n}{n}$ ways to pick another n dice to have 3 on them and so on. So the answer is:

$$
\frac{\binom{6 n}{n}\binom{5 n}{n}\binom{4 n}{n}\binom{3 n}{n}\binom{2 n}{n}\binom{n}{n}}{6^{6 n}}
$$

5. Pick a permutation of $\{1,2,3,4,5,6\}$ uniformly at random. What is the probability that it has a fixed point that is an even number? [15 points]

The probability that 2 is a fixed point is $1 / 6$, since there are 5 ! permutations that have 2 in second spot, and 6 ! permutations in total. Similarly, the probability that 4 is a fixed point is $1 / 6$, and so is the probability that 6 is a fixed point.

The probability that both 2 and 4 are fixed points is $4!/ 6!=1 / 30$, and so is the probability for any two other specific numbers. The probability that all 2,4 , and 6 are fixed is $3!/ 6!=1 / 120$. So by inclusion exclusion, the answer is:

$$
\frac{1}{6}+\frac{1}{6}+\frac{1}{6}-\frac{1}{30}-\frac{1}{30}-\frac{1}{30}+\frac{1}{120}=\frac{49}{120}
$$

6. Recall that the Poisson distribution is:

$$
P(X=k, \lambda)=\lim _{n \rightarrow \infty}\binom{n}{k}(\lambda / n)^{k}(1-\lambda / n)^{n-k}
$$

Use the fact that $P(X=0, \lambda)=e^{-\lambda}$ to derive an expression for $P(X=k, \lambda)$ that is independent of n. [10 points]

For any $k>0$:

$$
\begin{aligned}
\frac{P(X=k, \lambda)}{P(X=k-1, \lambda)} & =\lim _{n \rightarrow \infty} \frac{\binom{n}{k}(\lambda / n)^{k}(1-\lambda / n)^{n-k}}{\binom{n}{k-1}(\lambda / n)^{k-1}(1-\lambda / n)^{n-k+1}}=\lim _{n \rightarrow \infty} \frac{\frac{n!}{k!(n-k)!}}{\frac{n!}{(k-1)!(n-k+1)!}} \frac{\lambda / n}{1-\lambda / n} \\
& =\lim _{n \rightarrow \infty} \frac{n-k+1}{k} \frac{\lambda / n}{1-\lambda / n}=\lim _{n \rightarrow \infty} \frac{\lambda-(k-1) \lambda / n}{k(1-\lambda / n)}
\end{aligned}
$$

As $n \rightarrow \infty$ all terms with $1 / n$ go to 0 . So:

$$
\frac{P(X=k, \lambda)}{P(X=k-1), \lambda}=\frac{\lambda}{k}
$$

If we combine this with the fact that $P(X=0, \lambda)=e^{-\lambda}$, we get:

$$
\begin{gathered}
P(X=0, \lambda)=e^{-\lambda} \\
P(X=1, \lambda)=e^{-\lambda} \lambda \\
P(X=2, \lambda)=e^{-\lambda} \frac{\lambda^{2}}{2} \\
P(X=3, \lambda)=e^{-\lambda} \frac{\lambda^{3}}{6} \\
\vdots \\
P(X=k, \lambda)=e^{-\lambda} \frac{\lambda^{k}}{k!}
\end{gathered}
$$

7. Let X and Y be independent random variables with density functions:

- $f_{X}(x)=3 / x^{4}, \Omega_{X}=(1, \infty)$
- $f_{Y}(y)=e^{-y}, \Omega_{Y}=(0, \infty)$

Find the expectation and variance of $Z=X+Y$. [10 points]

$$
\begin{gathered}
E(X)=\int_{1}^{\infty} \frac{3 x}{x^{4}} d x=\int_{1}^{\infty} \frac{3}{x^{3}} d x=\left[\frac{-3}{2 x^{2}}\right]_{1}^{\infty}=\frac{3}{2}=\mu_{X} \\
V(X)=E\left(X^{2}\right)-\mu_{X}^{2}=\int_{1}^{\infty} \frac{3 x^{2}}{x^{4}} d x-\frac{9}{4}=\int_{1}^{\infty} \frac{3}{x^{2}} d x-\frac{9}{4}=\left[\frac{-3}{x}\right]_{1}^{\infty}-\frac{9}{4}=3-\frac{9}{4}=\frac{3}{4} \\
E(Y)=\int_{0}^{\infty} y e^{-y} d y=\left[-e^{-y}-y e^{-y}\right]_{0}^{\infty}=e^{0}=1=\mu_{Y} \\
V(Y)=E\left(Y^{2}\right)-\mu_{Y}^{2}=\int_{0}^{\infty} y^{2} e^{-y} d y-1=\left[-y^{2} e^{-y}-2 e^{-y}-2 y e^{-y}\right]_{0}^{\infty}-1=2 e^{0}-1=2-1=1 \\
E(Z)=E(X)+E(Y)=\frac{5}{2} \\
V(Z)=V(X)+V(Y)=\frac{5}{3}
\end{gathered}
$$

8. Let X be a continuous random variable that is uniformly distributed on $(0,2)$. Find the sample space, probability density and cumulative probability distribution of

$$
Y=X^{3} .
$$

[10 points]
$\Omega_{Y}=(0,8)$. To find the cumulative distribution function of Y, we use the fact that X^{3} is an increasing function.

$$
P[Y \leq y]=P[X \leq \sqrt[3]{y}]=\frac{1}{2} \sqrt[3]{y}
$$

And the probability density $f_{Y}(y)$ is the derivative of cumulative probability distribution:

$$
f_{Y}(y)=\frac{d}{d y}\left(\frac{1}{2} \sqrt[3]{y}\right)=\frac{1}{6} y^{-2 / 3}
$$

