Math 20, Spring 2005, Test 2 Solutions

Instructions: Problems 1-7 count 12 points each, while the last problem counts 16 points.
You may use a calculator to help with arithmetic, including logs, exponentiation, and
factorials (if there is a factorial button).

1. A typesetter makes on average 1 typographical error per 1000 words. A book he is
typesetting has on average 300 words per page and is 500 pages long. What is the
probability that a random page has 2 or more errors?

Solution 1. We model this with a Poisson distribution with A = .3, the expected number of
errors per page. Thus, the probability that a page has 0 or 1 errors is e=3(1 + .3) ~ .963.
Thus the probability of 2 or more errors is ~ .037.

Solution 2. Viewing this as a binomial distribution with p = .001 for the probability of
a word being typed in error, we are being asked for 1 — b(300,0,p) — b(300, 1, p). This is
1 —(.999)3%0 — (300)(.999)2°9(.001). This also works out to be ~ .037.

2. In problem 1, how many errors and how many error-free pages would one expect in
the book?

Solution 1. The book has 500 x 300 = 150000 words. Thus, the expected number of errors
is 1/1000 times this, or 150. Using the Poisson model, the probability that a page is error
free is e 73, so the expected number of error-free pages is 500e ™3 ~ 370.

Solution 2. The first part is done as in Solution 1. For the second part we use the binomial
distribution, so the probability for an error-free page is (.999)3°° and the expected number
of such pages is 500 times this, which is ~ 370.

3. An urn contains 2 gold balls and 3 silver balls. You draw balls at random without
replacing them until you’ve drawn both of the gold balls. Each time you draw a ball
you win a dollar if it is gold and lose a dollar if it is silver. What is the expectation
for this game?

Let p; be the probability that we draw the second gold ball on the jth draw. We compute
these probabilities for j = 2,3,4,5. We have po = (2/5)(1/4) = 1/10. To have 3 draws, the
picks must be GSG or SGG. The chance for the first is (2/5)(3/4)(1/3) = 1/10, and the
chance for the second is (3/5)(2/4)(1/3) = 1/10. Thus, ps = 1/5. For 4 draws, the picks
must be GSSG, SGSG, or SSGG. The chances for each of these are (2/5)(3/4)(2/3)(1/2) =
1/10, (3/5)(2/4)(2/3)(1/2) = 1/10, (3/5)(2/4)(2/3)(1/2) = 1/10, respectively, so ps =
3/10. Finally, since the probabilities add to 1, we have ps = 2/5. Now we find the
expected value of the game. This is

2:p2+1-ps+0-ps+(—1)-ps =0.

Here’s another way, perhaps more clever, to figure the probabilities. After you finish
drawing both gold balls, there are either 0, 1, 2, or 3 silver balls left. Let’s then compute
the probabilities of picking these numbers of silver balls and never picking a gold ball.
That is, we pick all 5 balls and ask how long the run of silver is at the end. This would
be the same as the probability of the same run of silver at the start. The chance for 0 is



2/5, and this is ps. The chance for 1 is (3/5)(2/4) = 3/10, and this is p4. The chance for 2
is (3/5)(2/4)(2/3) = 1/5, and this is ps. And the chance for 3 is (3/5)(2/4)(1/3) = 1/10,
and this is po.

4. Alice and Bob play “heads and tails” (I'm not making this up, it’s in the book) where
a fair coin is fairly flipped n times. Each time it comes up heads, Alice wins a penny
from Bob, and each time it comes up tails, she loses a penny to Bob. Let A be Alice’s
winnings (which may be negative if she loses money). Find E(A) and V(A).

Clearly E(A) = 0 since this holds for one coin flip and expectation is additive. Variance is
also additive for independent events, so it suffices to find the variance for one coin flip, and
then multiply this by n. This one-coin-flip variance is (1 —0)?(1/2) + (=1 —0)%(1/2) = 1.
So V(A) = n. (Units are “pennies-squared”.)

5. What is Chebyshev’s inequality? How is it proved?

If X is a numerically valued random variable with mean g and standard deviation o, and
€ is a positive number, then P(|X — u| > ¢) < 0%/¢2. (In many of your statements, you
just gave this last inequality without introducing the cast of characters involved. I didn’t
grade off for this, but it is much better to be explicit when letters are introduced.) Proof:
Let x run over the values of X. We have
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from which the result follows. Here are details on the above display. The first equality in
this chain is essentially the definition of variance, and the last equality is the definition of
the probability involved. To get from the first sum to the second sum, the only change is
that possibly some positive terms are removed, thus the first sum is greater than or equal
to the second one. The next inequality follows since for each x in the second sum, the
expression (z — p)? is at least €2, and the corresponding factor m(x) is positive. In this
transition, we also have factored out the constant €? from the sum.

6. A fair coin is fairly flipped 10,000 times. What is the approximate probability that it
lands heads exactly 4971 times?

Solution 1. We use the approximation theorem, which is part of the central limit theorem.
Here we have p = 5000 and o = /2500 = 50. Thus, we are 29/50 = .58 standard

deviations below the mean. The answer then is about (1/50)(1/v/27)e~(=-58)°/2 ~ .00674.

Solution 2. This is given by the binomial probability and is exactly (‘§;0°)271%:090. The

binomial coefficient may be approximated with Stirling’s formula, giving

/27.[.10, 00010,000.5
V2497149715, /275()295029.5

since the powers of ¢ cancel. The log of this expression is about 6926.473. And the log of
210,000 i5 about —6931.472. Adding, the log of our probability is about —4.999, so the
probability is about e=*%%? ~ .00674.



7. In problem 6, what is the approximate probability that the coin lands heads fewer
than 4971 times?
This may be done with the “Bernoulli tails” method we discussed near the beginning of
the course, but an easier and more accurate method is to use the central limit theorem.
This probability is approximated by

1 -6
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— e dt = .5 — NA(.6).

Looking up NA(.6) from the table, we see the answer is about .2743. The number —.6

in this solution comes from using that the standard deviation is 50, so that 4970 is .6

standard deviations below the mean. It may be more accurate to “split the difference”

between 4970 and 4971 and so say we are 29.5/50 = .59 standard deviations below the

mean. Interpolating in the table (that is taking a number 9/10 of the way from .1915 to
.2257), we have that our probability is about .5 — .2223 = .2777.

8. Counsider a lottery where there is a 0.9 chance of not winning anything, a 0.099 chance
of winning $5, and a 0.001 chance of winning $250. The lottery ticket costs $1. What
is the expected value of this game? What is the probability of breaking even or better
if you buy 100 tickets?

The expected value is
(—=1)(.9) + 4(.099) + 249(.001) = —.255.

(Or one can figure (0)(.9) 4+ 5(.099) + 250(.001) = .745, and then subtract 1 for the cost of
playing the game.) The mean square is

(—=1)%(.9) + 4%(.099) + 249%(.001) = 64.485.
Thus the variance for one game is
64.485 — (—.255)% ~ 64.42.

Hence the variance for 100 games is about 6442, and the standard deviation about 80.26.
The mean for 100 games is —25.5. Thus, breaking even, or 0, is 25.5/80.26 ~ .318 standard
deviations above the mean. The chance for reaching at least this is then about

1 e /2
NGT: /318 e dt = .5 — NA(.318).
Interpolating in the table, this is about .5 — .1246 = .3754. Using —.5 instead of 0 in the
above calculation, gives 25/80.26 ~ .311 standard deviations above the mean, resulting in
a final probability of about .3780.
This is the way I expected you to do the problem, but there is a cautionary tale here.
The central limit theorem tells what happens as n — oo. Is n = 100 close enough to
infinity that the central limit theorem gives useful numbers? We can try to figure the odds



on this problem another way. Clearly you will at least break even if you win the $250
jackpot at least once, or if you win $5 at least 20 times. The first has probability about
1 — e ! ~.095. The second has probability

3 <190>(.099)jﬂ901)100_j;*'002'
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(The chance that both should occur is negligible.) Thus, the actual probability of at least
breaking even is about .097, which is quite a bit different from what the central limit
theorem “tells” us. (I checked out the instructor’s solution manual for problem 9.2.12,
which is similar, and is one we discussed in class. It too used the central limit theorem and
got answers significantly off from the truth. I've informed the authors.) The moral of the
story is that the central limit theorem can give a useful approximation for finite problems
with large variance when the number of trials is very large. If the variance is not so large,
then the number of trials need not be quite so big. Of course, a quantitative version of
this rule-of-thumb is called for!



