5. (5) If X and Y are any two random variables, then the *covariance* of X and Y is defined by Cov(X,Y) = E((X-E(X))(Y-E(Y)). What is Cov(X,X)? Show that, if X and Y are independent, then Cov(X,Y) = 0; and show, by an example, that we can have Cov(X,Y) = 0 and X and Y not independent.

- 6. (5) We have two instruments that measure the distance between two points. The measurements given by the two instruments are random variables X_1 and X_2 that are independent with $E(X_1) = E(X_2) = \mu$, where μ is the true distance. From experience with these instruments, we know the values of the variances σ_1^2 and σ_2^2 . These variances are not necessarily the same. From two measurements, we estimate μ by the weighted average $\overline{\mu} = \omega X_1 + (1 \omega) X_2$. Here ω is chosen in [0, 1] to minimize the variance of $\overline{\mu}$.
 - (a) What is $E(\overline{\mu})$?
 - (b) How should ω be chosen in [0,1] to minimize the variance of $\overline{\mu}$?

- 7. (10) For a sequence of Bernoulli trials, let X_1 be the number of trials until the first success. For $j \ge 2$, let X_j be the number of trials after the (j-1)st success until the jth success. It can be shown that X_1, X_2, \cdots is an independent trials process.
 - (a) What is the common ditribution, expected value, and variance for X_{j} ?
 - (b) Let $T_n = X_1 + X_2 + \ldots + X_n$. Then T_n is the time until the nth success. Find $E(T_n)$ and $V(T_n)$.
 - (c) Use the result of (b) to find the expected value and variance for the number of tosses of a coin until the nth occurance of a head.

- 9. (5) Suppose that n people have their hats returned at random. Let $X_i=1$ if the ith person gets his or her own hat back and 0 otherwise. Let $S_n=\sum_{i=1}^n X_i$. Then S_n is the total number of people who get their own hats back. Show that
 - (a) $E(X_i^2) = 1/n$.
 - (b) $E(X_i, X_j) = 1/n(n-1)$ for $i \neq j$.
 - (c) $E(S_n^2) = 2$.
 - (d) $V(S_n) = 1$.

11. (5) Show that, if X and Y are random variables taking on only two values each, and if E(XY) = E(X)E(Y), then X and Y are independent.