
Central Limit Theorem & Preview of Markov
Chains

Math 20

August 3, 2012



Announcements

I Homework 6 has been posted and is due on Wednesday,
August 8.

I Midterm Exam is Thursday, August 9 from 4-6pm in Moore
Hall Filene Auditorium. (If you have a conflict you must let
me know by Monday!!)

I Monday and Wednesday of next week, we have a guest
speaker. The lectures will be recorded.

I Tuesday will be an (optional) Matlab tutorial session during
x-hour.



The Four Versions of the Central Limit Theorem:

Theorem (1)

(Central Limit Theorem for the Binomial Distribution) For the
binomial distribution b(n, p, j), we have

lim
n→∞

√
npq · b(n, p, 〈np + x

√
npq〉) = ϕ(x).

Notice that stated another way (that may be easier to remember),
this says:

lim
n→∞

√
npq · b(n, p, j) = ϕ(j∗)

where

j∗ =
j − np
√

npq
.
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The Four Versions of the Central Limit Theorem:

What kind of questions is this version of the theorem meant
to answer?

I Estimate the probability of rolling exactly 15 sixes when you
roll a die 100 times.

I Estimate the probability of getting exactly 480 heads when
you flip a coin 1000 times.

I Estimate the probability that a box with 120 times has exactly
6 defective items if the probability that a single item is
defective is p = 0.05.

I In general, used to estimate the probability of j successes in n
Bernoulli trials where p is the probability of success, where n
is large.



The Four Versions of the Central Limit Theorem:

What kind of questions is this version of the theorem meant
to answer?

I Estimate the probability of rolling exactly 15 sixes when you
roll a die 100 times.

I Estimate the probability of getting exactly 480 heads when
you flip a coin 1000 times.

I Estimate the probability that a box with 120 times has exactly
6 defective items if the probability that a single item is
defective is p = 0.05.

I In general, used to estimate the probability of j successes in n
Bernoulli trials where p is the probability of success, where n
is large.



The Four Versions of the Central Limit Theorem:

What kind of questions is this version of the theorem meant
to answer?

I Estimate the probability of rolling exactly 15 sixes when you
roll a die 100 times.

I Estimate the probability of getting exactly 480 heads when
you flip a coin 1000 times.

I Estimate the probability that a box with 120 times has exactly
6 defective items if the probability that a single item is
defective is p = 0.05.

I In general, used to estimate the probability of j successes in n
Bernoulli trials where p is the probability of success, where n
is large.



The Four Versions of the Central Limit Theorem:

What kind of questions is this version of the theorem meant
to answer?

I Estimate the probability of rolling exactly 15 sixes when you
roll a die 100 times.

I Estimate the probability of getting exactly 480 heads when
you flip a coin 1000 times.

I Estimate the probability that a box with 120 times has exactly
6 defective items if the probability that a single item is
defective is p = 0.05.

I In general, used to estimate the probability of j successes in n
Bernoulli trials where p is the probability of success, where n
is large.



The Four Versions of the Central Limit Theorem:

What kind of questions is this version of the theorem meant
to answer?

I Estimate the probability of rolling exactly 15 sixes when you
roll a die 100 times.

I Estimate the probability of getting exactly 480 heads when
you flip a coin 1000 times.

I Estimate the probability that a box with 120 times has exactly
6 defective items if the probability that a single item is
defective is p = 0.05.

I In general, used to estimate the probability of j successes in n
Bernoulli trials where p is the probability of success, where n
is large.



The Four Versions of the Central Limit Theorem:

Theorem (2)

(Central Limit Theorem for Bernoulli Trials) Let Sn be the number
of successes in n Bernoulli Trials with probability p for success and
let a and b be two fixed real numbers. Then

lim
n→∞

P(a ≤ Sn ≤ b) = lim
n→∞

P(a∗ ≤ S∗n ≤ b∗) =

∫ b∗

a∗
ϕ(x) dx

where

a∗ =
a− np
√

npq

and

b∗ =
b − np
√

npq
.



The Four Versions of the Central Limit Theorem:

This version is used to answer questions like:

I Estimate the probability of rolling more than 15 sixes when
you roll a die 100 times.

I Estimate the probability of getting between 480 and 520
heads when you flip a coin 1000 times.

I What is the probability that a 100-seat plane is overbooked if
105 tickets were sold and the probability a person shows up
for the flight is 0.9? That is, what is the probability that more
than 100 people show up?

I In general you want to know the probability that the number
of successes in n Bernoulli trial lies in some interval.
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The Four Versions of the Central Limit Theorem:

Also, used to answer questions about polling and hypothesis
testing:

I If you interview 1000 people and 600 of them express support
a ballot initiative, what is the 95% confidence interval for the
actual proportion of people in the population who support this
initiative?

I If a newspaper claims that 30% of people are afraid of heights
and you interview a random sample of size 2000 and 800 of
them tell you that they are afraid of heights, do you reject the
hypothesis put forth by the newspaper?
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The Four Versions of the Central Limit Theorem:

Theorem (3)

(Central Limit Theorem for Discrete Independent Trials) Let
Sn = X1 + X2 + · · ·+ Xn be the sum of n discrete independent
identically distributed random variables with parameters µ = E (Xi )
and σ2 = V (Xi ). Then

lim
n→∞

P(a ≤ Sn ≤ b) = lim
n→∞

P(a∗ ≤ S∗n ≤ b∗) =

∫ b∗

a∗
ϕ(x) dx

where

a∗ =
a− nµ√

nσ2

and

b∗ =
b − nµ√

nσ2
.



The Four Versions of the Central Limit Theorem:

Also notice that Version 2 of the Central Limit Theorem is just a
special case of Version 3!

To show this, just notice that in Version 2, each Xi is a Bernoulli
trial where Xi = 1 with probability p and Xi = 0 with probability
q = 1− p. Then

µ = p, σ2 = pq

and after plugging in these values, we get exactly the statement of
Version 2 of the Central Limit Theorem.



The Four Versions of the Central Limit Theorem:

Version 3 is used to answer questions like:

I Estimate the probability that you get a sum between 3500 and
3600 when you roll a die 1000 times.

I Estimate the probability that don’t lose any money when
playing roulette (or any other gambling game) if you play 100
times.

I In general, estimate the probability that Sn lies within some
interval, where the Xi ’s are not necessarily Bernoulli trials.
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The Four Versions of the Central Limit Theorem:

Theorem (4)

(General Version of the Central Limit Theorem) Let
X1,X2, · · · ,Xn, be a sequence of independent discrete random
variables (that are not necessarily identically distributed!) and
Sn = X1 + X2 + · · ·+ Xn. Define E (Xi ) = µi , V (Xi ) = σ2i (these
could all be different for different i). Denote the mean of Sn to be
mn = E (Sn) = µ1 + µ2 + · · ·+ µn. Denote the variance of Sn to
be s2n = V (Sn) = σ21 + σ22 + · · ·+ σ2n and assume that sn →∞ as
n→∞. If there exists a constant A such that |Xn| ≤ A for all n,
then

lim
n→∞

P(a ≤ Sn −mn

sn
≤ b) =

∫ b

a
ϕ(x) dx .
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The Four Versions of the Central Limit Theorem:

Why is this significant?

Essentially anything that can be thought of as being made up of as
the sum of many small independent (or weakly dependent) pieces
is approximately normal.

For example: Height, Weight, IQ, Blood Pressure, time it takes to
run a mile, and other traits that are governed by multiple genetic
and environmental factors. Other examples are errors in
measurements, measurements of natural phenomenon, and SAT
scores.
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The Four Versions of the Central Limit Theorem:

Figure: Living Histogram



The Four Versions of the Central Limit Theorem:

Height –

I Certainly has some genetic factors – If your parents are tall,
there’s a better chance you will be tall as well.

I However, it isn’t the case that there is a “tall” gene. In
reality, there are many factors (genetic and environmental)
which contribute to your height.

No single one of these is
overwhelming.
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Height –

I Certainly has some genetic factors – If your parents are tall,
there’s a better chance you will be tall as well.

I However, it isn’t the case that there is a “tall” gene. In
reality, there are many factors (genetic and environmental)
which contribute to your height. No single one of these is
overwhelming.

I Clearly, the probability distributions associated with each
factor will not be the same.



The Four Versions of the Central Limit Theorem:

We can let X1,X2, · · · ,Xn represent each factor’s contribution to
your height. Some contribute more than others. Some may be
negative (make you shorter). Then our theorem suggests that
Sn = X1 + · · ·+ Xn, which represents height is normally distributed.

Figure: Galton Board
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The Four Versions of the Central Limit Theorem:

So most people will land in the middle!

Galton: “The beautiful regularity in the structures of a population,
whenever they are statistically marshaled in order of their heights,
is due to the number of variable and quasi-independent elements of
which Structure is the sum.”



The Four Versions of the Central Limit Theorem:

Any Questions??



Markov Chains

On Monday, we’ll start Chapter 11 on Markov Chains!

Markov chains will give a way of studying a DEPENDENT trial
process. (So the likelyhood of an event depends on what happened
last.)

Applications:

I weather

I genetics, neuroscience

I physics (thermodynamics), chemistry (enzyme activity),
economics (dynamic macroeconomics, stock prices)

I Google (PageRank)

I Games (Monopoly, Chutes and Ladders, baseball)

I music

I cryptography



Markov Chains

On Monday, we’ll start Chapter 11 on Markov Chains!

Markov chains will give a way of studying a DEPENDENT trial
process. (So the likelyhood of an event depends on what happened
last.)

Applications:

I weather

I genetics, neuroscience

I physics (thermodynamics), chemistry (enzyme activity),
economics (dynamic macroeconomics, stock prices)

I Google (PageRank)

I Games (Monopoly, Chutes and Ladders, baseball)

I music

I cryptography



Markov Chains

Here is an example from Stanford’s Statistics Department. A
psychologist from the state prison statement showed up with a
collection of coded messages...



Markov Chains

Figure: Encoded Message



Markov Chains

How to decode?

In this case, it was safe to assume that the code was a simple
substitution cipher (so each symbol stands for a letter, number,
punctuation mark or space). What would you do?

Could try to make a substitution and see if it works. But even if
you are only working with letters, how many possible substitutions
are there? 26! That’s huge! More than the number of stars in the
universe! It would take a very long time.
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Markov Chains

As an alternative, one could see which symbol appears the most
often and replace that with “e” (the most common letter). Then
replace the second most common symbol with the second most
common letter and so on....

However, this has been shown to not work, especially if what
you’re trying to decipher is short.
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Markov Chains

So what you should look at instead is the relationship between
letters. How likely is it that one specific letter is followed by
another?

For example, “q” is almost always followed by “u”.

To determine these probabilities, the people at Stanford used War
and Peace to estimate the probability that one letter is followed by
another.



Markov Chains

They started with some random substitution and started making
random transpositions of letters and then used this information to
determine what the best substitution should be.

For example:

GCN

GCH

Is CN more common or is CH? If CH is more common, we accept
this transposition. If it is not more likely, flip a coin. If heads,
accept it. If tails, reject it and stay with CN.
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Markov Chains

We continue this process as many times as necessary (maybe a few
thousand times or more) and we get...

Figure: Deciphered Message



Markov Chains

Worked even though there is a mix of English, Spanish, and prison
jargon.

Takeaway Message: Markov chains are really useful! Plus, there
are really interesting applications to the real world (we’ll get to see
a few more as we study them).
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