
Math 20 – Problem Set 4 (due July 25)

This problem set is due at the beginning of class. This is just the problem list; please work out
these problems on a different sheet of paper. Please write neatly, staple the pages together,
and explain your work where appropriate. You do not need to simplify binomial coefficients(
n
k

)
for both which k > 3 and n− k > 3, or exponentials nk where n + k > 8.

1. Suppose you flip a penny and a dime, and their outcomes are independent. Let X be
the result of flipping the penny where we assign the value of Heads to be 1 and the
value of Tails to be 0, and let Y be the result of flipping the dime where we assign the
value of Heads to be 10 and the value of Tails to be 0. Compute the following:

(a) E(X + Y )

(b) E(XY )

(c) Var(X + Y )

(d) Var(XY ).

2. If A is any event and X is a discrete random variable with sample space Ω, the condi-
tional expectation of X given A is defined by

E(X|A) =
∑
x∈Ω

xP (X = x|A)

where P (X = x|A) is the probability that X = x given that the event A occurs. Roll
two fair six-sided dice and let X be the sum of their faces. Compute the following:

(a) E(X|A) where A is the event that the first die lands on 1 or 2.

(b) E(X|Ac) where A is as above.

(c) E(X|A)P (A) + E(X|Ac)P (Ac) where A is as above.

3. A random variable X has the following distribution:

P (X = 0) =
1

3
, P (X = 1) =

1

3
, P (X = 2) =

1

6
, P (X = 3) =

1

6
.

Compute E(X),Var(X), and sd(X).

4. Let X be a discrete random variable that takes only positive integer values. In this
case, our definition for expected values tells us that

E(X) =
∞∑
k=1

kP (X = k).

1



Prove the following alternate formula:

E(X) =
∞∑
k=1

P (X ≥ k)

which will be useful for us later in the class. This doesn’t need to be a rigorous proof;
in fact, a picture may help!

5. Use the formula from (4) to give an alternate proof of the fact that if X is a geometric
random variable with parameter p, then

E(X) =
1

p
.

(Hint: You’ll need an expression for P (X ≥ k). If we think of the geometric distribu-
tion as describing the number of coin flips it takes to land heads, where each time the
result is heads with probability p, what has to happen on the first k − 1 coin flips for
this to be the case?)

6. (a) The average number of homes sold per day by a specific real estate company
is two. What is the probability that the company will sell exactly three homes
tomorrow?

(b) What assumptions did you make in your answer to part (a)? Why might this be
incorrect?
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