Math 20 - Problem Set 5 (due August 1)

This problem set is due at the beginning of class. This is just the problem list; please work out these problems on a different sheet of paper. Please write neatly, staple the pages together, and explain your work where appropriate. You do not need to simplify binomial coefficients $\binom{n}{k}$ for both which $k>3$ and $n-k>3$, or exponentials n^{k} where $n+k>8$.

1. Let X be a random variable with range $[-1,1]$ and let $f(x)$ be its density of X. Find μ_{X} and σ_{X}^{2}, if, for $|x| \leq 1$:
(a) $f(x)=\frac{3}{4}\left(1-x^{2}\right)$
(b) $f(x)=\frac{x+1}{2}$
(c) $f(x)=\frac{3}{8}(x+1)^{2}$
(This is \#2 a,c,d from Grinstead and Snell, page 277.)
(a) $E(X)=\int_{-1}^{1} x \frac{3}{4}\left(1-x^{2}\right) d x=\int_{-1}^{1}\left(\frac{3}{4} x-\frac{3}{4} x^{3}\right) d x=\left.\left(\frac{3}{2} x^{2}-\frac{3}{16} x^{4}\right)\right|_{-1} ^{1}=\left(\frac{3}{2}-\frac{3}{16}\right)-\left(\frac{3}{2}-\right.$ $\left.\frac{3}{16}\right)=0$.
$\operatorname{Var}(X)=\int_{-1}^{1}\left(x^{2}-0\right) \frac{3}{4}\left(1-x^{2}\right) d x=\int_{-1}^{1} \frac{3}{4}\left(x^{2}-x^{4}\right) d x=\left.\left(\frac{1}{4} x^{3}-\frac{3}{20} x^{5}\right)\right|_{-1} ^{1}=$ $\left(\frac{1}{4}-\frac{3}{20}\right)-\left(-\frac{3}{4}+\frac{3}{20}\right)=\frac{1}{5}$.
(b) $E(X)=\frac{1}{3} ; \operatorname{Var}(X)=\frac{2}{9}$.
(c) $E(X)=\frac{1}{2} ; \operatorname{Var}(X)=\frac{3}{20}$.
2. Let X be a random variable defined on the interval $[0, \pi]$ whose density function is $f(x)=\frac{\sin (x)}{2}$. Compute the CDF $F(x)$. What is $P\left(\frac{\pi}{6} \leq X \leq \frac{\pi}{2}\right)$?

$$
\begin{aligned}
& F(x)=\int_{0}^{x} f(t) d t=\int_{0}^{x} \frac{\sin (t)}{2} d t=\left.\frac{-\cos (t)}{2}\right|_{0} ^{x}=\frac{1}{2}-\frac{\cos (x)}{2} \\
& P\left(\frac{\pi}{6} \leq x \leq \frac{\pi}{2}\right)=F\left(\frac{\pi}{2}\right)-F\left(\frac{\pi}{6}\right)=\frac{\cos (\pi / 6)-\cos (\pi / 2)}{2}=\frac{\sqrt{3}}{4} .
\end{aligned}
$$

3. On an average 8-hour school day, 960 people walk into Kemeny Hall. Assume, though this is certainly not the case, that this happens randomly at a constant rate over the 8 hours. What is the probability that exactly 8 people walk into Kemeny Hall within a 10-minute interval during the school day? What is the probability that exactly 48 people walk into Kemeny Hall within an hour?

We model this with a Poisson distribution. The rate at which students enter the building is 960 per 8 hours, or $960 / 8 / 6=20$ per 10 minutes. The probability that 8 people walk in during a 10 -minute interval is $\frac{e^{-20} 20^{8}}{8!}$.

For the second part, considering an hour interval, the rate is 120 , so the probability that 48 people enter is $\frac{e^{-120} 120^{48}}{48!}$.
4. The half-life of an isotope is the amount of time it takes for the probability of one isotope to decay into another to be 50\%. The time it takes for a Carbon-14 isotope to decay into a Nitrogen-14 isotope is given by an exponential distribution with expected value estimated at 8267 years. Find its half-life to the nearest year. Use a calculator to simplify exponentials and logarithms. (Note: Decay of radioactive particles is probably the most approprate process to model with the exponential distribution.)

We want to find the value x for which $P(X \leq x)=\frac{1}{2}$. But we know $P(X \leq x)=$ $1-e^{\frac{-1}{8267} x}$ as this is the CDF of the exponential distribution. Then we have

$$
\begin{aligned}
\frac{1}{2} & =e^{\frac{-1}{8267} x} \\
2 & =e^{\frac{1}{8267} x} \\
\ln (2) & =\frac{1}{8267} x \\
x & =\ln (2) \cdot 8267 \approx 5730 \text { years. }
\end{aligned}
$$

5. Suppose the height of an adult male is given by a normal distribution with expected value 70 inches and standard deviation 4 inches.
(a) Shaquille O'Neal is 83 inches tall. What proportion of adult males are taller than Shaq? Use a standard normal distribution table.
(b) Darren Sproles is 66 inches tall. What proportion of adult males are shorter than Darren? Do you need a normal distribution table to answer this question?
(a) $Z=\frac{X-\mu}{\sigma}=\frac{83-70}{4}=3.25 ; P(X \geq 83)=1-\Phi(3.25) \approx 0.0006$.
(b) $X=\frac{X-\mu}{\sigma}=\frac{66-70}{4}=-1 ; P(X \leq-1)=\Phi(-1) \approx 0.1587$.
6. Prove that if X is a continuous random variable with range $\left[x_{1}, x_{2}\right]$ and finite expected value μ, then,

$$
\operatorname{Var}(X)=E\left(X^{2}\right)-\mu^{2}
$$

(Note: This is true for all discrete and continuous RVs with finite mean and variance, and the proof is almost exactly the same!)

$$
\begin{aligned}
\operatorname{Var}(X) & =\int_{x_{1}}^{x_{2}}(x-\mu)^{2} f(x) d x \\
& =\int_{x_{1}}^{x_{2}}\left(x^{2}-2 \mu x+\mu^{2}\right) f(x) d x \\
& =\int_{x_{1}}^{x_{2}} x^{2} f(x) d x+2 \mu \int_{x_{1}}^{x_{2}} x f(x) d x+\mu^{2} \int_{x_{1}}^{x_{2}} f(x) d x \\
& =E\left(X^{2}\right)+2 \mu \cdot \mu-\mu^{2} \cdot 1 \\
& =E\left(X^{2}\right)-\mu^{2}
\end{aligned}
$$

An easier way: $\operatorname{Var}(X)=E\left((X-\mu)^{2}\right)=E\left(X^{2}-2 \mu X+\mu^{2}\right)=E\left(X^{2}\right)-2 \mu E(x)+\mu^{2}=$ $E\left(X^{2}\right)-2 \mu^{2}+\mu^{2}=E\left(X^{2}\right)-\mu^{2}$. Notice that this proof doesn't require X to be continuous - it works more generally.

