
Math 20 – Problem Set 6 (due August 15)

This problem set is due at the beginning of class. This is just the problem list; please work
out these problems on a different sheet of paper. Please write neatly, staple the pages to-
gether, and explain your work where appropriate. You do not need to simplify binomial
coefficients

(
n
k

)
for both which k > 3 and n− k > 3, or exponentials nk where n+ k > 8.

1. Midterm 2, #16.

(a) Prove that for a random variable X with expected value E(X) = λ,

Var(X) = E(X(X − 1)) + λ− λ2.

Do not use the equality Var(X) = E(X2)− E(X)2 unless you prove it.

(b) Use part (a) to prove that the standard deviation of the Poisson distribution with
parameter λ is

√
λ. You may use without proof that its expected value is λ. (This

was 16(b) from your exam.)

2. Suppose X has PDF f(x) = 1
2

on [3, 5] and 0 otherwise and Y has PDF g(y) = 1
2
(y−3)

on [3, 5] and 0 otherwise. Find the PDF of X + Y .

3. Let Sn = X1 + X2 + · · · + Xn is a sum of n independent exponentially distributed
random variables with rate λ. Prove by induction (remember this?) that for all n ≥ 2,
Sn has PDF

fSn(z) =
λe−λz(λz)n−1

(n− 1)!
.

(Hint: Sn = Sn−1 +Xn.)

4. A particle takes a biased random walk on the integer number line as follows: Starting
at 0, it moves one to the left with probability 0.2 and one to the right with probability
0.8 at each step. After 2500 such steps, find the expected value of its position and the
standard deviation of its position, and estimate (using the Central Limit Theorem) the
probability that the particle lands within 10 steps of its expected position.

5. Estimate the probability that the sum of 100 independently chosen random number
drawn uniformly from the interval [0, 1] is greater than 51. Then estimate the proba-
bility that the sum of 10000 independently chosen random numbers drawn uniformly
from the interval [0, 1] is greater than 5100. Comment on the disparity between these
probabilities.
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