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Random Walk
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A random walk is a mathematical object, known as a stochastic or random process, 
that describes a path that consists of a succession of random steps on some 
mathematical space such as the integers.
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Markov Chain

1

2

3

4

5

XC 2020



Specifying a Markov Chain

§ We describe a Markov chain as 
follows: We have a set of states, 
𝑆 = 𝑠!, 𝑠", ⋯ , 𝑠# .

§ The process starts in one of 
these states and moves 
successively from one state to 
another. Each move is called a 
step. 𝑠!

𝑠"

𝑠#

𝑠$

𝑠%
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§ If the chain is currently in state 𝑠!, 
then it moves to state 𝑠" at the 
next step with a probability 
denoted by 𝑝!" .

§ The probability 𝑝!" does not 
depend upon which states the 
chain was in before the current 
state.

§ These probabilities are called 
transition probabilities. 

𝑠!

𝑠"

𝑠#

𝑠$

𝑠%

𝑝!"
𝑝$"

𝑝%&

𝑝&" 𝑝"&
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§ The process can remain in the state it is in, and this occurs with probability 𝑝!! . 

𝑠!

𝑠"

𝑠#

𝑠$

𝑠%

𝑝!!

𝑝%%
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§ An initial probability distribution, defined on 𝑆, specifies the starting state. Usually this is done 
by specifying a particular state as the starting state.

𝑢!

𝑠#

𝑢"

𝑠$

𝑢#

𝑠%

𝑢$

𝑠&

𝑢%

𝑠'

𝑢
= 𝑢# 𝑢$ 𝑢% 𝑢& 𝑢'

0 1 0 0 0

(
!(#

)

𝑢! = 1
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THE LAND OF OZ

§ the Land of Oz is blessed by many things, but 
not by good weather. 

§ They never have two nice days in a row. If they 
have a nice day, they are just as likely to have 
snow as rain the next day. 

§ If they have snow or rain, they have an even 
chance of having the same the next day. 

§ If there is change from snow or rain, only half 
of the time is this a change to a nice day.
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§ They never have two nice days in a row. If they have a nice day, they are just as likely to 
have snow as rain the next day. 
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§ If they have snow or rain, they have an even chance of having the same the next day.
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§ If there is change from snow or rain, only half of the time is this a change to a nice day.
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§ If there is change from snow or rain, only half of the time is this a change to a nice day.
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§ States: 
§ 𝑠!: rain
§ 𝑠": nice
§ 𝑠&: snow

§ 𝑃 =
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Transition Matrix

§ The entries in the first row of the matrix 𝑃 in the example represent the probabilities for the 
various kinds of weather following a rainy day. 

§ Similarly, the entries in the second and third rows represent the probabilities for the various 
kinds of weather following nice and snowy days, respectively. 

§ Such a square array is called the matrix of transition probabilities, or the transition matrix.
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𝑃 =
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？the probability that, given the chain is in state 𝑖 today, it 
will be in state 𝑗 tomorrow

§ States: 
§ 𝑠!: rain
§ 𝑠": nice
§ 𝑠&: snow
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𝑃 =

1
2

1
4

1
4

1
2

0
1
2

1
4

1
4

1
2

？
the probability that, given the chain is in 

state 𝑖 today, it will be in state 𝑗
tomorrow

§ States: 
§ 𝑠!: rain
§ 𝑠": nice
§ 𝑠&: snow

𝑝'(
(!) = 𝑝'(

？
the probability that, given the chain is in 
state 𝑖 today, it will be in state 𝑗 the day 

after tomorrow
𝑝'(
(") = ⋯
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§ States: 
§ 𝑠!: rain
§ 𝑠": nice
§ 𝑠&: snow
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§ States: 
§ 𝑠#: rain
§ 𝑠$: nice
§ 𝑠%: snow

Day 0 Day 1 Day 2 …

…
𝑝!&
(")

= 𝑝!!𝑝!& + 𝑝!"𝑝"& + 𝑝!&𝑝&&

𝑝## 𝑝#%

𝑝#$ 𝑝$%

𝑝#% 𝑝%%
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𝑃 =
𝑝## 𝑝#$ 𝑝#%
𝑝$# 𝑝$$ 𝑝$%
𝑝%# 𝑝%$ 𝑝%%
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§ States: 
§ 𝑠#: rain
§ 𝑠$: nice
§ 𝑠%: snow

𝑝#%
($) = 𝑝##𝑝#% + 𝑝#$𝑝$% + 𝑝#%𝑝%%

Day 0 Day 1 Day 2 …

…

𝑝!! 𝑝!#

𝑝!" 𝑝"#

𝑝!# 𝑝##

𝑝## 𝑝#$ 𝑝#% 𝑝#%
𝑝$%
𝑝%%

𝑃$ =
𝑝## 𝑝#$ 𝑝#%
𝑝$# 𝑝$$ 𝑝$%
𝑝%# 𝑝%$ 𝑝%%

2
𝑝## 𝑝#$ 𝑝#%
𝑝$# 𝑝$$ 𝑝$%
𝑝%# 𝑝%$ 𝑝%%

=
𝑝#%
($)
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𝑝#%
($) = 𝑝##𝑝#% + 𝑝#$𝑝$% + 𝑝#%𝑝%%

= (
,(#

%

𝑝#,𝑝,%
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𝑝!" 𝑝"#

𝑝!# 𝑝##
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𝑝!! 𝑝!#

𝑝!" 𝑝"#

𝑝!& 𝑝&#

…𝑝!⋯ 𝑝⋯#

𝑝#%
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Day 0 Day 1 Day 2 Day … Day n …
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𝑝!! 𝑝!#

𝑝!" 𝑝"#

𝑝!# 𝑝##

𝑃$ =
𝑝## 𝑝#$ 𝑝#%
𝑝$# 𝑝$$ 𝑝$%
𝑝%# 𝑝%$ 𝑝%%

2
𝑝## 𝑝#$ 𝑝#%
𝑝$# 𝑝$$ 𝑝$%
𝑝%# 𝑝%$ 𝑝%%

=
𝑝#%
($)

𝑃) =
𝑝## 𝑝#$ 𝑝#%
𝑝$# 𝑝$$ 𝑝$%
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Transition Matrix

§ Let 𝑃 be the transition matrix of a Markov chain. 

§ The 𝑖𝑗th entry 𝑝'( of the matrix 𝑃+ gives the probability that the Markov chain, 
starting in state 𝑠', will be in state 𝑠( after 𝑛 steps.

Day 0 Day 1 Day 2 Day … Day n …

？ …？ … 𝑃) =
𝑝## 𝑝#$ 𝑝#%
𝑝$# 𝑝$$ 𝑝$%
𝑝%# 𝑝%$ 𝑝%%

)

=
𝑝#%
())
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§ Starting states: 
§ rain: 𝑢#
§ nice: 𝑢$
§ snow: 𝑢%

𝑢 = 𝑢! 𝑢" 𝑢&

§ Transition matrix:

𝑃 =
𝑝!! 𝑝!" 𝑝!#
𝑝"! 𝑝"" 𝑝"#
𝑝#! 𝑝#" 𝑝##

=
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𝑝!" 𝑝!#

𝑝##𝑝""

𝑝"! 𝑝#!

𝑝"#

𝑝#"

𝑢%
(#) = 𝑢#𝑝#% + 𝑢$𝑝$% + 𝑢%𝑝%%

𝑢# 𝑢$ 𝑢%
𝑝## 𝑝#$ 𝑝#%
𝑝$# 𝑝$$ 𝑝$%
𝑝%# 𝑝%$ 𝑝%%

𝑢(#) = 𝑢#
(#) 𝑢$

(#) 𝑢%
(#) = 𝑢𝑃

𝑝!#

𝑝"#

𝑝##

Day 0 Day 1 …

…

𝑢!

𝑢"

𝑢#

§ the probability that 
the chain is in state 
𝑠( after 𝑛 steps:

§ 𝑘 = 3
§ 𝑛 = 1
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𝑢,
(#) = 𝑢#𝑝#, + 𝑢$𝑝$, + 𝑢%𝑝%,

𝑢(#) = 𝑢#
(#) 𝑢$

(#) 𝑢%
(#) = 𝑢𝑃

𝑝!#

𝑝"#

𝑝##

Day 0 Day 1 …

…

𝑢!

𝑢"

𝑢#

§ the probability 
that the chain is 
in state 𝑠( after 
𝑛 steps:

§ 𝑛 = 1

𝑢%
(#) = 𝑢#𝑝#% + 𝑢$𝑝$% + 𝑢%𝑝%%

§ the probability 
that the chain is 
in state 𝑠( after 
𝑛 steps:

§ 𝑛 = 2

Day 0 Day 1 Day 2 …

𝑢!

…

𝑝!! 𝑝!#

𝑝!"
𝑝"#

𝑝!#

𝑝##

𝑢"

𝑢#

𝑝!#
(") = 𝑝!!𝑝!# + 𝑝!"𝑝"# + 𝑝!#𝑝## = .

(+!

#

𝑝!(𝑝(#

𝑢#
(") = 𝑢!𝑝!#

(") + 𝑢"𝑝"#
(") + 𝑢#𝑝##

(")

𝑢(
(") = 𝑢!𝑝!(

(") + 𝑢"𝑝"(
(") + 𝑢#𝑝#(

(")

𝑢(") = 𝑢!
(") 𝑢"

(") 𝑢#
(") = 𝑢𝑃"
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Transition Matrix

§ Let 𝑃 be the transition matrix of a Markov chain, and let 𝑢 be the probability vector 
which represents the starting distribution. 

§ Then the probability that the chain is in state 𝑠, after 𝑛 steps is the 𝑘th entry in the 
vector

𝑢(+) = 𝑢𝑃+.

Day 0 Day 1 Day 2 Day … Day n …

？ …？ …

𝑢()) = 𝑢𝑃)

= 𝑢
𝑝## 𝑝#$ 𝑝#%
𝑝$# 𝑝$$ 𝑝$%
𝑝%# 𝑝%$ 𝑝%%

)

= 𝑢#
()) 𝑢$

()) 𝑢%
())

𝑢!

𝑢"

𝑢#
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Open book

Scope: Mostly Chapters 7, 8, 9, 
10, and 11

§ sum of random variables
§ LLN and CLT
§ generating functions
§ Markov chains

Materials: slides, homework, 
quizzes, textbook

Date & Time: 12:00 pm – 10: 00 
pm, August 30

Office hours: August 27, 28

Homework due: 11:00 pm 
August 28
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