MATH 20: PROBABILITY

Combinations

Xingru Chen xingru.chen.gr@dartmouth.edu

How many possible choices are there in total?

Is it 6?

How many possible choices are there in total?

subset	subset
{sp, lp}	{1, 2}
{sp, sb}	{1, 3}
{lp, sb}	{2, 3}

How many possible choices are there in total?

in total?

Do we care about the order?

?

The number of permutations of n elements is given by n!

$$\frac{5\times4\times3}{3\times2\times1} = \frac{(5)_3}{3!} = 10$$

=

n choose *j*

n choose *j*

Binomial Coefficients

- The number of distinct subsets with j elements that can be chosen from a set with n elements is denoted by $\binom{n}{j}$.
- The number $\binom{n}{j}$ is called a binomial coefficient.

$$\binom{n}{0} = \binom{n}{n} = 1.$$

$$\binom{n}{j} = \frac{(n)_j}{j!} = \frac{n!}{j!(n-j)!} = \binom{n}{n-j}.$$

$$\binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{n} = 2^n.$$

$$\binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{n} = 2^n.$$

$$\binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{n} = 2^n.$$

3

Recurrence Relation: Pascal's Triangle

For integers n and j, with 0 < j < n, the binomial coefficients satisfy:

$$\binom{n}{j} = \binom{n-1}{j} + \binom{n-1}{j-1}.$$

do not include

include

Recurrence Relation: Pascal's Triangle

For integers n and j, with 0 < j < n, the binomial coefficients satisfy:

$$\binom{n}{j} = \binom{n-1}{j} + \binom{n-1}{j-1}.$$

Recurrence Relation: Pascal's Triangle

For integers n and j, with 0 < j < n, the binomial coefficients satisfy:

$$\binom{n}{j} = \binom{n-1}{j} + \binom{n-1}{j-1}.$$

Pascal's Triangle

```
from scipy.special import comb
pascal(n = 10, j = 5)
```

```
# Pascal's Triangle
def pascal(n, j):
    n_choose_j = int(comb(n, j))
    sum_choose = int(comb(n-1, j) + comb(n-1, j-1))
    return n_choose_j, sum_choose
```

Pascal's Triangle

n/j	0	1	2	3	4	5	6	7	8	
0	1									_
1	1	1					$\binom{n}{0} =$	$\binom{n}{n}=1.$		1
2	1	2	1				a co	olumn ar	nd the di	agonal
3	1	3	3	1		$\binom{n}{i}$	$=\frac{(n)_j}{}=$	$\frac{n!}{j!(n-j)!} =$	$= \binom{n}{n}$	2
4	1	4	6	4	1		j!			
5	1	5	10	10	5	1		symme	try in eve	ery row
6	1	6	15	20	15	6	1			
7	1	7	21	35	35	21	7	1		
8	1	8	28	56	70	56	28	8	1	

Pascal's Triangle

n/j	0	1	2	3	4	5	6	7	8	
0	1									
1	1	1					(n) (n)	-1) , $(n-1)$	-1)	
2	1	2	1				$\binom{j}{j} = \binom{j}{j}$	$\binom{-1}{j} + \binom{n-1}{j-1}$	-1 <i>)</i> ·	4
3	1	3	3	1				Pa	ascal's T	riangle
4	1	4	6	4	1					
5	1	5	10	10	5	1				
6	1	6	15	20	15	6	1			
7	1	7	21	35	35	21	7	1		
8	1	8	28	56	70	56	28	8	1	

Example

Find integers n and r such that the following equation is true:

$$\binom{13}{5} + 2\binom{13}{6} + \binom{13}{7} = \binom{n}{r}.$$

$$\binom{n}{j} = \binom{n-1}{j} + \binom{n-1}{j-1}.$$

Find integers n and r such that the following equation is true:

$$\binom{13}{5} + 2\binom{13}{6} + \binom{13}{7} = \binom{n}{r}.$$

$$\binom{n}{j} = \binom{n-1}{j} + \binom{n-1}{j-1}.$$

$$\binom{13}{6} + \binom{13}{5} = \binom{14}{6}.$$

$$\binom{13}{7} + \binom{13}{6} = \binom{14}{7}.$$

$$\binom{14}{7} + \binom{14}{6} = \binom{15}{7}.$$

TOSS A COIN

Toss a coin 5 times. What is the probability that there are 2 flips that land heads?

The 2nd and the 5th trials land heads:

$$p = (\frac{1}{2})^2 (\frac{1}{2})^3 = (\frac{1}{2})^5 = \frac{1}{32}.$$

How many possible choices?

$$\binom{5}{2} = \frac{(5)_2}{2!} = \frac{5 \times 4}{2 \times 1} = 10.$$

Е

Probability that there are 2 flips that land heads

Hanover 12:25 am

Sun

31°

₩EATHER

33° Monday 16th

Tue	Wed	Thu	Fri	Sat
***	•••	•••	***	
31°	30°	33°	32°	33°

220	Tue	Wed	Thu	Fri	Sat	Sun
33° -	***	•••	•••	•••		
Monday	31°	30°	33°	32°	33°	31°

- From Tuesday to Friday, it has 40% chance of raining everyday.
- What is the probability that on three of the four days it does not rain?

Hanover 12:25 pm

- From Tuesday to Friday, it has 40% chance of raining everyday.
- What is the probability that on three of the four days it does not rain?

4 choose 3

3 not rainy & 1 rainy

$$\binom{4}{3} \times (\frac{3}{5})^3 \times (\frac{2}{5})^1 = 4 \times \frac{54}{625} = \frac{216}{625}.$$

Hanover 12:25 pm

- From Tuesday to Friday, it has 40% chance of raining everyday.
- What is the probability that on three of the four days it does not rain?

How do we define success and failure?

?

not rainy

rainy

Hanover 12:25 pm

- What is the probability that on three of the four days it does not rain?
- What is the probability that on one of the four days it rains?

4 choose 3

!

4 choose 1

3 not rainy & 1 rainy

1 rainy & 3 not rainy

$$\binom{4}{3} \times (\frac{3}{5})^3 \times (\frac{2}{5})^1 = 4 \times \frac{54}{625} = \frac{216}{625}.$$

$$\binom{4}{1} \times (\frac{2}{5})^1 \times (\frac{3}{5})^3 = 4 \times \frac{54}{625} = \frac{216}{625}.$$

Wheel of Fortune

- Turn the wheel 10 times.
- What is the probability of getting 50 points twice?

Points	Probability
0	1/2
10	5/16
50	1/8
100	1/16

Wheel of Fortune

- Turn the wheel 10 times.
- What is the probability of getting 50 points twice?

Points	Probability
0	1/2
10	5/16
50	1/8
100	1/16

10 choose 2

2 50 points & 8 others

$$\binom{10}{2} \times (\frac{1}{8})^2 (\frac{7}{8})^8 = 45 \times \frac{7^8}{8^{10}}.$$

Bernoulli Trials

A Bernoulli trials process is a sequence of n chance experiments such that

- Each experiment has two possible outcomes, which we may call success and failure.
- The probability p of success on each experiment is the same for each experiment, and this probability is not affected by any knowledge of previous outcomes. The probability q of failure is given by q = 1 p.

Bernoulli Probabilities

B(n, p, j), the probability that in n Bernoulli trials there are exactly j successes. We have:

$$B(n,p,j) = \binom{n}{j} p^j q^{n-j}.$$

Bernoulli Trials	n	p	j	Probability
Toss a Coin	5	50%	2	$\binom{5}{2} \times (\frac{1}{2})^5$
Weather Forecast	4	60%	3	$\binom{4}{3} \times (\frac{3}{5})^3 \times (\frac{2}{5})^1$
Wheel Fortune	10	12.5%	2	$\binom{10}{2} \times (\frac{1}{8})^2 (\frac{7}{8})^8$

Wheel of Fortune revisit

- Turn the wheel 5 times.
- What is the probability of getting 100 points in total?

Points	Probability
0	1/2
10	5/16
50	1/8
100	1/16

Wheel of Fortune revisit

- Turn the wheel 5 times.
- What is the probability of getting 100 points in total?

Points	Probability		
0	1/2		
10	5/16		
50	1/8		
100	1/16		

Wheel of Fortune revisit

Points	Probability		
0	1/2		
10	5/16		
50	1/8		
100	1/16		

$$50 \times 2 + 0 \times 3 = 100$$

$$100 \times 1 + 0 \times 4 = 100$$

$$\binom{5}{2} \times (\frac{1}{8})^2 (\frac{1}{2})^3$$

$$p = p_A + p_B$$

$$\binom{5}{1} \times (\frac{1}{16})^1 (\frac{1}{2})^4$$

Binomial Distributions

- Let n be a positive integer and let p be a real number between 0 and 1.
- Let *B* be the random variable which counts the number of successes in a Bernoulli trials process with parameters *n* and *p*.
- Then the distribution b(n, p, k) of B is called the binomial distribution.

$$\binom{n}{0} p^0 q^n + \binom{n}{1} p^1 q^{n-1} + \dots + \binom{n}{n} p^n q^0 = \dots$$

Binomial Expansion

Binomial Theorem

The quantity $(a + b)^n$ can be expressed in the form:

$$(a+b)^n = \sum_{j=0}^n \binom{n}{j} a^j b^{n-j}.$$

$$(p+q)^n = \binom{n}{0} p^0 q^n + \binom{n}{1} p^1 q^{n-1} + \dots + \binom{n}{n} p^n q^0 = 1.$$

Binomial Theorem

$$(a+b)^n = \sum_{j=0}^n \binom{n}{j} a^j b^{n-j}.$$

Binomial Theorem

$$(a+b)^n = \sum_{j=0}^n \binom{n}{j} a^j b^{n-j}.$$

Let
$$n = 2$$
, we have

$$(a+b)^2 = {2 \choose 0}b^2 + {2 \choose 1}ab + {2 \choose 2}a^2 = a^2 + 2ab + b^2.$$

Let
$$n = 3$$
, we have

$$(a+b)^3 = {3 \choose 0}b^3 + {3 \choose 1}ab^2 + {3 \choose 2}a^2b + {3 \choose 3}a^3 = a^3 + 3a^2b + 3ab^2 + b^3.$$

Binomial Theorem

$$(a+b)^n = \sum_{j=0}^n \binom{n}{j} a^j b^{n-j}.$$

Let
$$a = b = 1$$
, we have

$$2^{n} = \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n}.$$

Let
$$a = -1$$
, $b = 1$, we have

$$0 = \binom{n}{0} - \binom{n}{1} + \binom{n}{2} - \dots + (-1)^n \binom{n}{n}.$$

Inclusion-Exclusion Principle

• Let P be a probability measure on a sample space Ω , and let $\{A_1, A_2, \dots, A_n\}$ be a finite set of events. Then

$$P(A_1 \cup A_2 \cup \cdots A_n) =$$

$$\sum_{i=1}^n P(A_i) - \sum_{1 \le i < j \le n} P(A_i \cap A_j) + \sum_{1 \le i < j < k \le n} P(A_i \cap A_j \cap A_k) - \cdots.$$

• If A and B are subsets of Ω , then

$$P(A \cup B) = P(A) + P(B) - P(A \cap B).$$

• If A, B and C are subsets of Ω , then

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(B \cap C) - P(A \cap C) + P(A \cap B \cap C).$$

Proof

- If the outcome ω occurs in at least one of the events A_i , its probability is added exactly once by the left side.
- We must show that it is also added exactly once by the right side.
- Assume that ω is in exactly k of the sets. Then its probability is added k times in the first term, subtracted $\binom{k}{2}$ times in the second, added $\binom{k}{3}$ times in the third term, and so forth.

Random Walk

A **random walk** is a mathematical object, known as a stochastic or random process, that describes a path that consists of a succession of random steps on some mathematical space such as the integers.

Random Walk (1 dimensional)

- An elementary example of a random walk is the random walk on the integer number line.
- It starts at 0 and at each step moves +1 or -1 with probability p and 1-p.

Random Walk (1 d)

After 10 steps, what is the probability of landing on

- 0
- 1
- 2
- -1
- -2
- •

Random Walk

coordinate	•••	-1	0	1	2	•••
left	• • •		5		4	
right	•••		5		6	
probability		0		0		

$$\binom{10}{5} \times p^5 (1-p)^5$$

$$\binom{10}{6} \times p^6 (1-p)^4$$

2

One Dimensional Random Walk

```
random_walk_1D(n = 10, p = 0.6)
path_rw_2D(n = 10, p = 0.6, fsize = (8, 6), fs = 18, index = 1)
```

```
# Take n steps
for i in range(n):
    # Generate a random number between 0 and 1
    u = random.uniform(0, 1)
    if u <= p:
        pos += 1 # go right
    else:
        pos -= 1 # go left
    positions.append(pos)
return positions</pre>
```


Stock Market

Binomial lattice model for stock prices

$$S(t+1) = \begin{cases} uS(t), & \text{with prob } p \\ dS(t), & \text{with prob } 1-p \end{cases}$$

• Two Dimensional Random Walk (Take-Home Problem)

```
random_walk_2D(n = 500, p_x = 0.5, p_y = 0.5)
path_rw_2D(n = 500, p_x = 0.5, p_y = 0.5, fsize = (8, 8), fs = 18, index = 1)
```


Random Walk and AI (Robots)

micro drones swarm robotics

XC 2020

In a restaurant n hats are checked and they are hopelessly scrambled. What is the probability that no one gets his own hat back?

$$p_0(n) = \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \frac{1}{5!} + \dots + \frac{(-1)^n}{n!}.$$

a random permutation

- Find the probability that it contains no fixed point.
- Recall that it is a one-to-one map of a set $A = \{a_1, a_2, \dots, a_n\}$ onto itself.
- Let A_i be the event that the ith element a_i remains fixed under this map.

$$p_0(n) = 1 - P(A_1 \cup A_2 \cup \cdots A_n)$$

$P(A_i)$

- Let A_i be the event that the ith element a_i remains fixed under this map.
- If we require that a_i is fixed, then the map of the remaining n-1 elements provides an arbitrary permutation of (n-1) objects.
- Since there are (n-1)! such permutations, $P(A_i) = \frac{(n-1)!}{n!} = \frac{1}{n}$.

$$\sum_{i=1}^n P(A_i) = n \times \frac{1}{n} = 1.$$

$P(A_i \cap A_j)$

- To have a particular pair (a_i, a_j) fixed, we can choose any permutation of the remaining n-2 elements.
- There are (n-2)! such choices and thus $P(A_i \cap A_j) = \frac{(n-2)!}{n!}$

$$\frac{1}{n(n-1)}$$

$$\sum_{1 \le i \le n} P(A_i \cap A_j) = {n \choose 2} \times \frac{1}{n(n-1)} = \frac{1}{2!}$$

$$P(A_i) = \frac{(n-1)!}{n!}$$

$$P(A_i \cap A_j) = \frac{(n-2)!}{n!}$$

$$P(A_i \cap A_j \cap A_k) = \frac{(n-3)!}{n!}$$

• ...

$$\sum_{i=1}^{n} P(A_i) = n \times \frac{(n-1)!}{n!} = 1$$

...

$$p_0(n) = 1 - P(A_1 \cup A_2 \cup \cdots A_n)$$

$$\sum_{i=1}^{n} P(A_i) = n \times \frac{(n-1)!}{n!} = 1$$

...

$$P(A_1 \cup A_2 \cup \cdots A_n) = \sum_{i=1}^n P(A_i) - \sum_{1 \leq i < j \leq n} P(A_i \cap A_j) + \sum_{1 \leq i < j < k \leq n} P(A_i \cap A_j \cap A_k) - \cdots$$

$$p_0(n) = \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \frac{1}{5!} + \dots + \frac{(-1)^n}{n!}.$$

