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3 choose 2

How many possible choices are there in

SMALL PLATES total?

LARGE PLATES

SWEET BITES

Is it 67
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. SMALL PLATES =1 - total?
. SWEET BITES = -

; {sp, p} (1, 2)
. - {sp, sb} {1, 3}
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3 choose 2

How many possible choices are there in
1 total?

A A A
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(3)2

Do we care about the order? ‘

The number of permutations of
n elements is given by n!

2!

A A A
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Do we care about the order? ’

The number of permutations of
n elements is given by n!

,_3%2_ (32 n
S 2x1 2!

! (3);

2!

3 choose 2

A A A
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5 choose 3

How many possible choices are there
in total?

United States

Brazil

Egypt

China

Australia

XC 2020



5 choose 3

® 3
° > ® 4 Do we care about the order?
|
® 3 5
1
® 4
The number of permutations of n
® 5 elements is given by n!
|
® 3
(5)3

® 4 5x4x3 _ (83 _ 10
3! 3x2X1 3! |
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n choose j

= B
o

Do we care about the order? ‘

H & O
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n choose j

nx(n—1)x--(n—j+1) _ (n);
Jx(j=1)x--1 !
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Binomial Coefficients

= The number of distinct subsets with j elements that can be chosen from a set with
n elements is denoted by (’})

= The number (") Is called a binomial coefficient.

HRIGE K
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Recurrence Relation: Pascal’s Triangle

For integers n and j, with 0 < j < n, the binomial coefficients satisfy:

() =(5)+ ()

do not include
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Recurrence Relation: Pascal’s Triangle

For integers n and j, with 0 < j < n, the binomial coefficients satisfy:

()= () + (322, 1

do not include

e®
® +
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Recurrence Relation: Pascal’s Triangle

For integers n and j, with 0 < j < n, the binomial coefficients satisfy:

() =(5)+ ()

- Pascal's Triangle

from scipy.special import comb
pascal(n = 10, j = 5)

# Pascal’s Triangle
def pascal(n, j):
n_choose_j = int(comb(n, j))

sum_choose = int(comb(n-1, j) + comb(n-1, j-1))
return n_choose j, sum choose
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Pascal’s Triangle

: ‘ M=()=1 L!

S —

1 2 a column and the diagonal

l _(n?, ](:']),=(nrfj)' n
- n N & B

r s o [ s [

o 5w 5
1 7/ 21 35 35 21 7/
1 3 28 56 70 56 28 3
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Pascal’s Triangle
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Example

Find integers n and r such that the following equation is true:

(5)+2(5) +(5) = ().
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Find integers n and r such that the following equation is true:

(5)+2(5) +(5) = ().

(e) +(5) = (&) () + () =)

)+ =)
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TOSS A COIN

Toss a coin 5 times. What is the probability
that there are 2 flips that land heads?




The 2nd and the 5t trials land heads:

1

—(-)()3 ()5
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5 choose 2

@0 CO®eO

X v v X X X X v v X
X v X v X X X v X Vv
X v X X Vv X X X v Vv
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5 choose 2

‘ How many possible choices? ‘
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Probability that there are 2 tlips that land heads

5 choose 2 L!

(>3’

1

10X —
32

5

16

X v

‘ 2 heads & 3 tails ' n

—
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Hanover

Weather Forecast

12:25 am

O~ WEATHER
o <, Tue Wed Thu Fri Sat Sun
33 a0+ = = & & =
Monday 16" 4mph / 67 31° 30 33 32° 33 31°



Hanover

Weather Forecast 12:25 pm

- WEATHER
3 3 0 Tue Wed Thu Fri Sat Sun
Monday 31° 30° 33° 32° 33° 31°

= From Tuesday to Friday, it has 40% chance of raining everyday.
= What is the probability that on three of the four days it does not rain?
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Hanover

Weather Forecast 12:25 pm

= From Tuesday to Friday, it has 40% chance of raining everyday.
= What is the probability that on three of the four days it does not rain?

4 choose 3 ‘ n ‘ 3 not rainy & 1 rainy ‘ n

5
OG- = ‘
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Hanover

Weather Forecast 12:25 pm

= From Tuesday to Friday, it has 40% chance of raining everyday.
= What is the probability that on three of the four days it does not rain?

How do we define success and failure?

not rainy
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Hanover

Weather Forecast 12:25 pm

What is the probability that on three of the four days it does not rain?
What is the probability that on one of the four days it rains?

‘ 4 choose 3

‘ 4 choose 1

‘ 3 not rainy & 1 rainy ‘ n ‘ 1 rainy & 3 not rainy

- OX@™X'= g =G l DO =
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Wheel of Fortune

= Turn the wheel 10 times.
= What is the probability of
getting 50 points twice?

0 1/2
10 5/16
50 1/8

100 1/16
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Wheel of Fortune

= Turn the wheel 10 times.
= What is the probability of getting 50 points twice?

Probability
‘ 10 choose 2 ‘ n

0 1/2
10 5/16
20 1/8 ‘ 2 50 points & 8 others ‘ n
100 1/16 E—

‘ () (3)2()8= 45% .
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Bernoulli Trials

A Bernoulli trials process is a sequence of n chance experiments such that

= Each experiment has two possible outcomes, which we may call success and failure.

= The probability p of success on each experiment is the same for each experiment,

and this probability is not affected by any knowledge of previous outcomes. The
probability g of failure is givenby g = 1 — p.

Toss a Coin Wheel of Fortune

Weather Forecast

0
not rain & rain i _ 60%

Bernoulli Trials
outcome 1 & 2

|
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Bernoulli Probabilities

B(n,p,j), the probability that in n Bernoulli trials there are exactly j
successes. We have:

B(n,p,j) = (’}) plq" . ‘

Bernoulll

Toss a Coin 50% x(—)5
Weather 0 4 E 34 (A1
Forecast 4 sk . (3) ><(5) ><(5)

10 1.7
Wheel Fortune 10 12.5% 2 ( ) X(=)?%(=)8
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Wheel of Fortune revisit

= Turn the wheel 5 times.
= What is the probability of
getting 100 points in total?

0 1/2
10 5/16
50 1/8

100 1/16
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Wheel of Fortune revisit

= Turn the wheel 5 times.
= What is the probability of getting 100 points in total?

Probability
‘ 50%2 + 0x3 = 100 ‘

0 1/2
10 5/16
50 1/8 ‘ 100x1 + 0x4 = 100 ‘ ﬂ

100 1/16
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Wheel of Fortune revisit

Probability
‘ 50%2 + 0X3 = 100 ‘

0 1/2
10 5/16
50 1/8 ‘ 100x1 + 0x4 = 100 ‘ ﬂ
100 1/16 —
5 1.1
~N\27.13\3
‘ (2) X(B) (2)

(i
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Binomial Distributions

= Let n be a positive integer and let p be a real number between 0 and 1.

= L et B be the random variable which counts the number of successes in a Bernoulli
trials process with parameters n and p.

= Then the distribution b(n,p, k) of B is called the binomial distribution.

(n) poqn + (n) plqn—l 4o 4 (n) pnqo — ...
‘ 0 1
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Binomial Expansion

Binomial Theorem
The quantity (a + b)™ can be expressed in the form:

(a+b)*= 37 (") a/b". ‘

0+ "= (r°q" + (Dp'q" 4+ ()p"q° = 1. ‘
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Binomial Theorem
(a+b)'= 2= O(j) alb™ 7, ‘

@%%?

X X 6 choose 4
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Binomial Theorem

‘ (a+b)"= X7, (’}) alb™ .

Let n = 2, we have

(a+b)*=(5)b* + ()ab + (5)a“ = a“ + 2ab + b“.
@rbr= (O Qav+ (et = :

Let n = 3, we have

3

3 3 3
(a + b)*= (0) b3 + (1) ab? + (2) a2b + (3) a® = a® + 3a2b + 3ab? + b®.
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Binomial Theorem

(a+b)"= X7, (’}) alb™ .

Leta = b =1, we have

2= () + () + @)+ ()

Lleta =—1, b =1, we have

0= ()= () + () — =+ D)
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Inclusion-Exclusion Principle

= L et P be a probability measure on a sample space Q, and let
{A{,A4,,--,A,,} be a finite set of events. Then

P(Al UAZ U "‘An) —

?:1P(Al) o ZlSi<jSTLP(Ai N A]) + 215i<j<kSTl P(Al N A] N Ak) — e,
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« If A and B are subsets of Q, then
P(AUB) = P(4) + P(B) — P(ANB).
« If A, B and C are subsets of Q, then

P(AUBUC)=PA)+PB)+P(C)—P(ANB)—P(BNC)—P(ANC)+P(ANnBNC(C).

XC 2020



Proof

e |f the outcome w occurs in at

least one of the events 4;, its
probability is added exactly once
by the left side.

We must show that it is also
added exactly once by the right
side.

Assume that w is in exactly k of
the sets. Then its probability is
added k times in the first term,

subtracted (%) times in the
second, added (%) times in the
third term, and so forth.
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Random Walk

°
°

A random walk is a mathematical object, known as a stochastic or random process,
that describes a path that consists of a succession of random steps on some
mathematical space such as the integers.
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Random Walk (1 dimensional)

£ &

\ @

s K

« An elementary example of a random walk is the random walk on the integer
number line.
|t starts at 0 and at each step moves +1 or —1 with probability p and 1 — p.
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Random Walk (1 d)

£ & 7
1 1_p

_ﬁ

After 10 steps, what is the probability of landing on

0
1
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Random Walk

& * & 4
-____FP

-1 0 1

coodinate] .| 4| o0 | 1 2
e NS

right 5 6
probability 0 0

l (150) @l =) Lg ‘ (160) xp®(1 —p)* @
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« One Dimensional Random Walk

random_walk_1D(n = 10, p = 0.6)
path_rw_2D(n = 10, p = 0.6, fsize = (8, 6), fs = 18, index = 1)

# Take n steps
for i in range(n):
# Generate a random number between 0 and 1
u = random.uniform(0, 1)
if u <= p:
pos += 1 # go right
else:
pos -= 1 # go left
positions.append(pos)
return positions

XC 2020



Random walk: n =10, p = 0.6 Random walk: n =10, p = 0.6
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Random walk: n =10, p=0.6 Random walk: n =10, p=0.6

position
position




Stock Market
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Binomial lattice model for stock prices

_uS(), with prob p
e = {dS(t), with prob 1 —p
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import yfinance as yf
load_STOCK_raw(company_index = "AAPL')
figure_stock_price(company_index = 'AMZN', date_initial = datetime.date(int(2020),int(6),int(1)),

fsize = (12, 6), fs = 20)



500, p = (0.5, 0.5)

X position

2D Random walk: n

uonisod A

(8, 8), fs = 18, index = 1)

500, p = (0.5, 0.5)

(n = 500, p_x = 0.5, p_y = 0.5)
X position

path_rw_2D(n = 500, p_x = 0.5, p_y = 0.5, fsize
2D Random walk: n
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Random Walk and AI (Robots)

micro drones
swarm robotics




Hat Check Problem

In a restaurant n hats are checked and they are hopelessly scrambled.

What is the probability that no one gets his own hat back?
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Hat Check Problem

D"

1 1

11
TRETRTARETR

po(n) =

n!

XC 2020



Hat Check Problem

a random permutation

= Find the probability that it contains no fixed point.

Recall that it is a one-to-one map of a set A = {aq,a,,:--,a,,} onto
itself.

Let A; be the event that the ith element a; remains fixed under this
map.

Po(n) =1—-P(A; UA U Ay)
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Hat Check Problem

P(A4;)

= Let A; be the event that the ith element a; remains fixed under this
map.

If we require that a; is fixed, then the map of the remaining n — 1
elements provides an arbitrary permutation of (n — 1) objegts.

Since there are (n — 1)! such permutations, P(4;) = S %

n!
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Hat Check Problem

P(A; N 4))

= Jo have a particular pair (a;, ;) fixed, we can choose any
permutation of the remainingn — 2 elements.

= There are (n — 2)! such choices and thus P(4; n 4;) = (";'2)’ =
1

n(n-1)
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Hat Check Problem

(n— 1) (n 1)|

Pl = iz1 P(A;) = nx =1

(n 2)'

P(A;n4;) =

- Zl<l<]<nP(A nA ) (TL) — _

(n 3)'

P(A;NnA;NA) =

" Dis<i<j<ksn P(A NA;N Ak) (")x =k _ 3
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Hat Check Problem

(n—1)!
n!

nP(4)) = nx =1

1

- 21<l<]<nP(A ﬂA) (n)xn(n D = o

po(n) =1—-P(A; UA U ---A,)

(n 3)' 1

3

" Yicicjersn P(Ai N4 0 4y) = (5)x

P(AjUA U Ay,) = ?:1 P(4;) — lei<j5nP(Ai N Aj) + 215i<j<k5nP(Ai N Aj N Ak) -

(= 1)”

po(n) =~ — =+ — =+t
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