MATH 20: PROBABILITY

Continuous Conditional Probability

Xingru Chen xingru.chen.gr@dartmouth.edu

Density Functions of Continuous Random Variable

• Assume X is continuous random variable with density function f(x), and if E is an event with positive probability, we define conditional density function (which is normalized to have integral 1 over E):

$$f(x|E) = \begin{cases} f(x)/P(E), & x \in E \\ 0, & x \notin E \end{cases}$$

Density Functions of Continuous Random Variable

• For any event F, the conditional probability of F given E is given by

$$P(F|E) = \int_F f(x|E)dx = \int_{E \cap F} \frac{f(x)}{P(E)}dx = \frac{P(E \cap F)}{P(E)}.$$

Density Functions of Continuous Random Variable

• For any event F, the conditional probability of F given E is given by

$$P(F|E) = \int_F f(x|E)dx = \int_{E \cap F} \frac{f(x)}{P(E)}dx = \frac{P(E \cap F)}{P(E)}.$$

• Event *E* and *F* are independent

 \iff

$$P(E \cap F) = P(E)P(F)$$

 \iff

$$P(F|E) = P(F)$$
 and $P(E|F) = P(E)$.

Uniform Distribution

$$f(x) = \begin{cases} \frac{1}{18}, & 2 \le x \le 20\\ 0, & x < 2 \text{ or } x > 20 \end{cases}$$

Event E: X > 10

$$P(X > 10) = \frac{5}{9}$$

Event F: X > 12

$$P(X > 12) = \frac{4}{9}$$

Event F|E: X > 12|X > 10

$$P(X > 12 | X > 10) = \cdots$$

Uniform Distribution

$$f(x) = \begin{cases} \frac{1}{18}, & 2 \le x \le 20\\ 0, & x < 2 \text{ or } x > 20 \end{cases}$$

Event E: X > 10

$$P(X > 10) = \frac{5}{9}$$

Event F: X > 12

$$P(X > 12) = \frac{4}{9}$$

Event F|E: X > 12|X > 10

$$P(X > 12 | X > 10) = \frac{P(X > 12 \cap X > 10)}{P(X > 10)}$$
$$= \frac{P(X > 12)}{P(X > 10)} = \frac{4}{5}$$

- The exponential distribution is the probability distribution of the **time** between events in a Poisson point process. That is, a process in which events occur continuously and independently at a constant average rate λ .
- The density function of an exponential distribution is

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0\\ 0, & x < 0 \end{cases}.$$

The cumulative distribution function of an exponential distribution is

$$F(x) = \begin{cases} 1 - e^{-\lambda x}, & x \ge 0 \\ 0, & x < 0 \end{cases}.$$

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0 \\ 0, & x < 0 \end{cases}.$$

Time

The exponential distribution is often concerned with the amount of time until some specific event occurs.

Cumulative distribution function

$$F(x) = \begin{cases} 1 - e^{-\lambda x}, & x \ge 0 \\ 0, & x < 0 \end{cases}.$$

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0 \\ 0, & x < 0 \end{cases}.$$

 Assume the life span of a lightbulb is a random variable t with an exponential density function. The average lifetime is 30 months.

average: μ

$$\mu = 30$$

rate: λ

$$\lambda = \frac{1}{\mu}$$

$$F(x) = \begin{cases} 1 - e^{-x/30}, & x \ge 0 \\ 0, & x < 0 \end{cases}.$$

• If the lightbulb is already lit for 15 months, how long it will continue to last until burning out?

$$f(x) = \begin{cases} \frac{1}{30}e^{-x/30}, & x \ge 0\\ 0, & x < 0 \end{cases}.$$

$$F(x) = \begin{cases} 1 - e^{-x/30}, & x \ge 0 \\ 0, & x < 0 \end{cases}.$$

• If the lightbulb is already lit for 15 months, how long it will continue to last until burning out?

$$f(x) = \begin{cases} \frac{1}{30} e^{-x/30}, & x \ge 0 \\ 0, & x < 0 \end{cases}$$

$$F(x) = \begin{cases} 1 - e^{-x/30}, & x \ge 0 \\ 0, & x < 0 \end{cases}.$$

$$F(x) = \begin{cases} 1 - e^{-x/30}, & x \ge 0 \\ 0, & x < 0 \end{cases}$$

Event E: X > 15

$$P(X > 15) = 1 - P(X \le 15) = e^{-15/30}$$

= $e^{-1/2}$

Event *F*: X > 15 + s

$$P(X > 15 + s) = 1 - P(X \le 15 + s)$$

= $e^{-(15+s)/30} = e^{-1/2}e^{-s/30}$

• If the lightbulb is already lit for 15 months, how long it will continue to last until burning out?

Event E: X > 15

$$P(X > 15) = 1 - P(X \le 15) = e^{-15/30}$$

= $e^{-1/2}$

Event *F*: X > 15 + s

$$P(X > 15 + s) = 1 - P(X \le 15 + s)$$

= $e^{-(15+s)/30} = e^{-1/2}e^{-s/30}$

Event F|E:X > 15 + s|X > 15

$$P(X > 15 + s | X > 15) = \frac{P(X > 15 + s \cap X > 15)}{P(X > 15)} = \frac{P(X > 15 + s)}{P(X > 15)} = \frac{e^{-1/2}e^{-s/30}}{e^{-1/2}} = e^{-s/30}$$

$$f(x) = \begin{cases} \frac{1}{30}e^{-x/30}, & x \ge 0\\ 0, & x < 0 \end{cases}.$$

$$F(x) = \begin{cases} 1 - e^{-x/30}, & x \ge 0 \\ 0, & x < 0 \end{cases}.$$

Event F|E:X > 15 + s|X > 15

$$P(X > 15 + s | X > 15) = \frac{P(X > 15 + s \cap X > 15)}{P(X > 15)} = \frac{P(X > 15 + s)}{P(X > 15)} = \frac{e^{-1/2}e^{-s/30}}{e^{-1/2}} = e^{-s/30}$$

Event H: X > s

$$P(X > s) = 1 - P(X \le s) = e^{-s/30}$$

Event F|E:X > 15 + s|X > 15

$$P(X > 15 + s | X > 15) = \frac{P(X > 15 + s \cap X > 15)}{P(X > 15)} = \frac{P(X > 15 + s)}{P(X > 15)} = \frac{e^{-1/2}e^{-s/30}}{e^{-1/2}} = e^{-s/30}$$

Event H: X > s

$$P(X > s) = 1 - P(X \le s) = e^{-s/30}$$

$$P(X > 15 + s | X > 15) = P(X > s)$$

- Assume the life span of a lightbulb is a random variable t with an exponential density function.
- If the lightbulb is already lit for time r, what is the probability that it will not burn out for further time s?

average: μ

rate: λ

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0 \\ 0, & x < 0 \end{cases}.$$

$$F(x) = \begin{cases} 1 - e^{-\lambda x}, & x \ge 0 \\ 0, & x < 0 \end{cases}.$$

$$P(X > r + s | X > r) = \cdots$$

- Assume the life span of a lightbulb is a random variable t with an exponential density function.
- If the lightbulb is already lit for time r, what is the probability that it will not burn out for further time s?

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0 \\ 0, & x < 0 \end{cases}.$$

$$F(x) = \begin{cases} 1 - e^{-\lambda x}, & x \ge 0 \\ 0, & x < 0 \end{cases}.$$

$$P(X > r + s | X > r) = e^{-\lambda s} = P(X > s)$$

Memoryless Property

$$P(X > r + s | X > r) = P(X > s)$$

Time

- The amount of time we have to wait for an occurrence does not depend on how long we have already waited.
- The memoryless property says that knowledge of what has occurred in the past has no effect on future probabilities.

JOINT DENSITY AND CUMULATIVE DISTRIBUTION FUNCTIONS

For continuous random variables

Joint Density and Cumulative Distribution Functions

- Let X_1, X_2, \dots, X_n be continuous random variables associated with an experiment. And let $X = (X_1, X_2, \dots, X_n)$.
- The joint cumulative distribution function of *X* is defined by

$$F(x_1, x_2, \dots, x_n) = P(X_1 \le x_1, X_2 \le x_2, \dots, X_n \le x_n).$$

• The joint density function of X, $f(x_1, x_2, \dots, x_n)$, satisfies the following equations:

$$F(x_1, x_2, \dots, x_n) = \int_{-\infty}^{x_1} \int_{-\infty}^{x_2} \dots \int_{-\infty}^{x_n} f(x_1, x_2, \dots, x_n) dt_n dt_{n-1} \dots dt_1.$$

Therefore we have

$$f(x_1, x_2, \dots, x_n) = \frac{\partial^n F(x_1, x_2, \dots, x_n)}{\partial x_1 \partial x_2 \dots \partial x_n}.$$

Single variate

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$

Bivariate

$$f(x,y) = \frac{1}{2\pi\sigma_x\sigma_y\sqrt{1-\rho^2}} \exp\left(-\frac{1}{2(1-\rho^2)} \left[\frac{(x-\mu_x)^2}{\sigma_x^2} + \frac{(y-\mu_y)^2}{\sigma_y^2} - \frac{2\rho(x-\mu_x)(y-\mu_y)}{\sigma_x\sigma_y}\right]\right)$$

Bivariate density function

INDEPENDENT RANDOM VARIABLES

For continuous random variables

Independent Random Variables

- Let X_1, X_2, \dots, X_n be continuous random variables with cumulative distribution functions $F_1(x), F_2(x), \dots, F_n(x)$. And let $X = (X_1, X_2, \dots, X_n)$.
- These random variables are **mutually independent** if the joint cumulative distribution of X is the product of individual cumulative distribution distributions $F_i(x_i)$,

$$F(x_1, x_2, \dots, x_n) = F_1(x_1)F_2(x_2)\cdots F_n(x_n),$$

for any choice of x_1, x_2, \dots, x_n .

Theorem

Let X_1, X_2, \dots, X_n be continuous random variables with density functions $f_1(x), f_2(x), \dots, f_n(x)$.

Then these random variables are mutually independent if and only if $f(x_1, x_2, \dots, x_n) = f_1(x_1) f_2(x_2) \dots f_n(x_n)$, for any choice of x_1, x_2, \dots, x_n .

Independent Random Variables

Theorem

Let X_1, X_2, \dots, X_n be continuous random variables with density functions $f_1(x), f_2(x), \dots, f_n(x)$.

Then these random variables are **mutually independent** if and only if $f(x_1, x_2, \dots, x_n) = f_1(x_1) f_2(x_2) \dots f_n(x_n)$, for any choice of x_1, x_2, \dots, x_n .

Theorem

Let X_1, X_2, \dots, X_n be mutually independent continuous random variables. Let $\phi_1(x), \phi_2(x), \dots, \phi_n(x)$ be continuous functions. Then $\phi_1(X_1), \phi_2(X_2), \dots, \phi_n(X_n)$ are mutually independent.

Single variate

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$

Theorem

... these random variables are **mutually independent** if and only if $f(x_1, x_2, \dots, x_n) = f_1(x_1) f_2(x_2) \dots f_n(x_n)$, for any choice of x_1, x_2, \dots, x_n .

$$f(x,y) = \frac{1}{2\pi\sigma_x\sigma_y\sqrt{1-\rho^2}} \exp\left(-\frac{1}{2(1-\rho^2)} \left[\frac{(x-\mu_x)^2}{\sigma_x^2} + \frac{(y-\mu_y)^2}{\sigma_y^2} - \frac{2\rho(x-\mu_x)(y-\mu_y)}{\sigma_x\sigma_y}\right]\right)$$

How?

?

Single variate

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$

Theorem

... these random variables are **mutually independent** if and only if $f(x_1, x_2, \dots, x_n) = f_1(x_1)f_2(x_2) \dots f_n(x_n)$, for any choice of x_1, x_2, \dots, x_n .

Bivariate

$$f(x,y) = \frac{1}{2\pi\sigma_x\sigma_y\sqrt{1-\rho^2}} \exp\left(-\frac{1}{2(1-\rho^2)} \left[\frac{(x-\mu_x)^2}{\sigma_x^2} + \frac{(y-\mu_y)^2}{\sigma_y^2} - \frac{2\rho(x-\mu_x)(y-\mu_y)}{\sigma_x\sigma_y}\right]\right)$$

How?

?

$$\rho = \cdots$$

 $\rho = 0$

dependent $\rho \neq 0$

 $\begin{array}{c} \mathrm{independent} \\ \rho = 0 \end{array}$

dependent $\rho \neq 0$

Independent Random Variables

- Suppose you choose two numbers x and y, independently at random from the interval [0,1].
- Given that their sum lies in the interval [0, 1], find the probability that

$$xy < \frac{1}{2}.$$

independently

given that

independently

independently

given that

Event $E: X + Y \in [0, 1]$

$$P(0 \le X + Y \le 1) = \cdots$$

independently

given that

Event $E: X + Y \in [0, 1]$

lines

$$P(0 \le X + Y \le 1) = \frac{1}{2}$$

Event $E: X + Y \in [0, 1]$

lines

$$P(0 \le X + Y \le 1) = \frac{1}{2}$$

Event $F: XY < \frac{1}{2}$

$$P\left(XY < \frac{1}{2}\right)$$

Event $E: X + Y \in [0, 1]$

lines

$$P(0 \le X + Y \le 1) = \frac{1}{2}$$

Event $F: XY < \frac{1}{2}$

hyperbolas

$$P\left(XY < \frac{1}{2}\right)$$

Event $E: X + Y \in [0, 1]$

$$P(0 \le X + Y \le 1) = \frac{1}{2}$$

Event $F: XY < \frac{1}{2}$

$$P\left(XY < \frac{1}{2}\right)$$

Event $F|E: XY < \frac{1}{2}|X + Y \in [0, 1]$

$$P\left(XY < \frac{1}{2} \left| 0 \le X + Y \le 1 \right.\right) = \cdots$$

Event $E: X + Y \in [0, 1]$

$$P(0 \le X + Y \le 1) = \frac{1}{2}$$

Event $F: XY < \frac{1}{2}$

$$P\left(XY < \frac{1}{2}\right)$$

Event $F|E: XY < \frac{1}{2}|X + Y \in [0, 1]$

$$P\left(XY < \frac{1}{2} \left| 0 \le X + Y \le 1 \right.\right) = 1$$

