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Density Functions of Continuous Random Variable

= Assume X is continuous random
variable with density function f (x),
and if E is an event with positive Y A
probability, we define conditional

density function (which is normalized
to have integral 1 over E):
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Density Functions of Continuous Random Variable

= For any event F, the conditional probability of F given E is given by

P(ENF
P(FIE) = [, f(x|E)dx = [, 28 dx = 0.
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Density Functions of Continuous Random Variable

= For any event F, the conditional probability of F given E is given by

P(ENF
P(FIE) = [, f&x|E)dx = [, 28 dx = 0.

= Event E and F are independent

P(ENF) = P(E)P(F)

P(F|E) = P(F) and P(E|F) = P(E).
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Uniform Distribution
Event E: X > 10

| |||||

Yy AN
P(X>10)=§

Event F: X > 12

4
P(X>12) =

Event FIE: X > 12|X > 10

P(X>12|X>10) = -

1
— 2<x<?2
fx) =< 18’ =x=20
0, x < 2orx>20
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Uniform Distribution R

| |||||

Yy AN
P(X>10)=§

Event F: X > 12

4
P(X>12) =

Event FIE: X > 12|X > 10

o)

1
P(X>12NnX > 10
f(x)={ 1’ 2<x<20 P(X>12|X > 10) = ( P(X > 10) )
0, x<2orx>20 _p(X>12)_4.
- P(X>10) 5
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Exponential Distribution

= The exponential distribution is the probability distribution of the time between
events in a Poisson point process. That is, a process in which events occur
continuously and independently at a constant average rate A.

= The density function of an exponential distribution is

_fre™, x>0
f(x)_{ 0, x<0

= The cumulative distribution function of an exponential distribution is

1 — —Ax’ > ()
F(x)={ §x<x0 '
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Exponential Distribution
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Density function

=

le ™ x>0

0, x<0

Exponential Distribution

Time

The exponential distribution is often
concerned with the amount of time
until some specific event occurs.

Cumulative distribution
function

1—e™™, x>0
F(x)={ gx<x0 '
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The Life Span of a Lightbulb

= Assume the life span of a lightbulb
Is a random variable t with an
exponential density function. The

average lifetime is 30 months. ﬂ
average: u rate: 4
1
u=30 A=-
H -

ie—x/BO x>0 1 — -x/30 > 0
f(x) =430 ’ = . F(x)z{ € o X =0
0, x <0 0, x <0
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The Life Span of a Lightbulb

= |f the lightbulb is already lit for 15
months, how long it will continue to
last until burning out?

1
-x/30
f=430° " *=0.
0, x <0

1 —e*/30 x>0
F(x) = ' =Y.
2 { 0, x<0
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The Life Span of a Lightbulb

= |f the lightbulb is already lit for 15 months, how long it will continue to last until burning
out?

ie_x/SO x>0 1 — -x/30 > ()
f(x) =430 ’ B F(x)={ e =Y
0’ x <0 O, x <0

Event E: X > 15

P(X >15) =1— P(X < 15) = ¢~15/30
— o~ 1/2

Event F: X > 15+ s

P(X>1545s)=1—P(X <15+5)
— e—(15+s)/30 — e—l/Ze—s/SO
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The Life Span of a Lightbulb

= |f the lightbulb is already lit for 15 months, how long it will continue to last until burning out?

Event E: X > 15 Event F: X > 15+ s

P(X >15)=1—-P(X < 15) = ¢~ 15/30 P(X>15+s)=1—-P(X <15+5)
— o~ 1/2 — o—(15+5)/30 — ,—1/2,-5/30

Event F|E:X > 15 + s|X > 15

PX>15+snX>15) P(X>15+s) e M2/ [
PIX>15+s|X > 15) = P(X > 15) T P(X>15) | e 2
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The Life Span of a Lightbulb

1
 _—x/30 __—x/30
f(x): 308 ’ XZO F(X)z{l eox/ ! SCZO
0, x<0 y X<

Event F|E:X > 15 + s|X > 15

P(X>15+snX>15) PX>15+s) e—1/25-5/30

-s/30

P(X > 15+ s|X > 15) = =e

P(X > 15) ~ P(X>15) = e71/2

Event H: X > s

P(X>s)=1—-P(X <s) =e5/30
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The Life Span of a Lightbulb

Event F|E:X > 15 + s|X > 15

P(X>15+snX>15) PAX>15+s) e—1/25-5/30

— —s/30
P(X > 15) P(X > 15) e~1/2

P(X>15+s|X > 15) = =e

Event H: X > s

P(X>s)=1—-P(X <s) =e5/30

P(X>15+s|X>15) =P(X > s) -
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The Life Span of a Lightbulb

= Assume the life span of a lightbulb is a random
variable t with an exponential density function.

= |f the lightbulb is already lit for time r, what is
the probability that it will not burn out for further ﬂ
time s?

average: u rate: 4

_ Jre™, x>0
f(x)_{ 0, x<0

PX>r+slX>r)=--

F(x) :{1—9_’1’5, X = 0. ‘7 -

0, x <0
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The Life Span of a Lightbulb

= Assume the life span of a lightbulb is a random
variable t with an exponential density function.
= |[f the lightbulb is already lit for time r, what is

the probability that it will not burn out for further ﬂ
time s?

_fae™*, x>0 _J1—e™  x=0
f(x)—{ 0 x<0 - F(x) { 0 x<0

PX>r+s|X>r)=e=PX >5s) -
| |
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Exponential Distribution

Memoryless Property

PX>r+s|X>r)=PX >s)

Time

= The amount of time we have to wait for an occurrence
does not depend on how long we have already waited.

= The memoryless property says that knowledge of what has
occurred in the past has no effect on future probabilities.
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JOINT DENSITY AND CUMULATIVE
DISTRIBUTION FUNCTIONS

For continuous random variables



XC 2020



Joint Density and Cumulative Distribution Functions

= Let X1,X,,--+,X,, be continuous random variables associated with an experiment.
And let X = (X1, X5, -+, Xp).

= The joint cumulative distribution function of X is defined by
F(xq, x5, ,%,) = P(Xy < x1, X5 < x9,000, Xy < xp).
= The joint density function of X, f (x4, x,, -+, x,), satisfies the following equations:
F(x1, %2, %) = ff; f_xjo ff:o f e, %0, 00, %) dtpdty_q -+ dty.

= Therefore we have

onF X5,
f(xl; xz, ;xn) — (x1 X2 Xn)

0X10X5 00Xy
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Normal Distribution

Single variate

1

fx) =

\V 2o

1Xx—p.>

e 2

o

0.40
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0.30
0.25
5 0.20
0.15
0.10
0.05

0.00

Normal distribution

XC 2020



2
(v —uy)  2p(x — )y — ),

1 1 X — Uy)?
( ) T 2

flx,y) = exp| — |
2100y 1 — p? 2(1-p»)"  of oy

Bivariate density function
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INDEPENDENT RANDOM VARIABLES

For continuous random variables



Independent Random Variables

= Let X1,X,,-++,X,, be continuous random variables with cumulative distribution
functions F;(x), Fo(x), -, E,(x). And let X = (X1, X5, -+, X;)).

= These random variables are mutually independent if the joint cumulative distribution
of X is the product of individual cumulative distribution distributions F;(x;),

F(xpxz; ,Xn) — Fl(xl)FZ(xZ) Fn(xn)a

for any choice of xq, x5, -+, x,,.

Let X;,X,,:-,X,, be continuous random variables with density functions

fl(x)' fZ(x)r rfn(x)'

Then these random variables are mutually independent if and only if
f(xli X2, ,xn) = fl(xl)fZ(xZ) "'fn(xn)’ for any choice of X1, X2, Xn-
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Independent Random Variables

Theorem
Let X;,X,,:-,X,, be continuous random variables with density functions

fl(x)' fZ(x)r rfn(x)'

Then these random variables are mutually independent if and only if
f(xb X2, ,xn) = fl(xl)fZ(xZ) "'fn(xn)’ for any choice of X1, X2, Xn-

Theorem

Let X, X,, -, X,, be mutually independent continuous random variables.

Let ¢1(x), Pp,(x),--, P, (x) be continuous functions.
Then ¢, (X1), P»(X3), -, o, (X;,) are mutually independent.

XC 2020



Normal Distribution

Single variate

f(x) =

... these random variables are mutually
independent if and only if

E f(x1'x2! "',Xn) — fl(xl)fZ(xZ) "'fn(xn)a

. for any choice of x4, x,, -, x,,.

e 2

\21o

Bivariate

1 Gow)? -m) 20— - uy>]>

(x,y) = exp| —
fxy 21050y 1 — p2 b 2(1 - p?) 0% oy OxOy

‘ How?
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Normal Distribution

Single variate

f(x) =

e 2

\21o

. for any choice of x4, x,, -, x,,.

... these random variables are mutually
independent if and only if

E f(xli X2, "',Xn) — fl(xl)fZ(xZ) "'fn(xn)a

Bivariate

) 1 1 @-w)? (v-1) 20— ) - py)
e = 21050y 1 — p? P <_ 2(1 = p*) g ' 0'3% - Ox0y |
e A | -+ H
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Normal Distribution

dependent
p#*0

independent
p=0

Bivariate density function

Bivariate density function
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Normal Distribution

independent dependent .
-+
p=20 p#*0
Bivariate normal distribution Bivariate normal distribution
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Independent Random Variables

w independent
independent M

- S

independent

independent
independent
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Example

= Suppose you choose two numbers x and y, independently at random
from the interval [0, 1].

= Given that their sum lies in the interval [0, 1], find the probability that

1
xy<5.

independently ‘ given that ‘
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Example

0.8

0.6

independently ‘ n

0.4

0.2
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Example

‘ independently ‘ n

‘ given that ‘ n

Event E: X +Y € [0,1]

PO<X+Y<1) =

0.8

0.6

0.4

0.2

0.2

0.4

0.6

0.8
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Example

‘ iIndependently ‘ n

0.8

‘ given that ‘ n o0

0.4

Event E: X +Y € [0,1]

0.2
lines

[)(() f; )( -+ }’ f; ];) = é; 0 0.2 0.4 0.6 0.8 1
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Example

Event E: X +Y € [0,1]

lines

1
PO<X+Y<D =g

Event F: XY < %

P (XY < 1)

0.8

0.6

0.4

0.2

0.2

0.4

0.6

0.8
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Example

Event E: X +Y € [0,1]

lines

1
PO<X+Y<D =g

Event F: XY < %

hyperbolas

P(XY< 1)
2

—

0.8

0.6

0.4

0.2

0.2

0.4

0.6

0.8
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Example

—

Event E: X +Y € [0,1]

1 0.8
PO<X+Y<1)=7

0.6

Event F: XY < %

0.4

P(XY < 1)
2

0.2

Event F|E: XY <2 |X +Y € [0,1]

P(XY<%‘OSX+Y§1)=--- -
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Example

—

Event E: X +Y € [0,1]

1 0.8
P(osx+ys1)=§

0.6

Event F: XY < %

0.4

P(XY < 1)
2

0.2

Event F|E: XY <2 |X +Y € [0,1]

P(XY<%‘OSX+YS1)=1 X
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