Math 22 Fall 2003 Second Hour Exam

1. (20) Consider the linear transformation $T: \mathbb{R}^4 \to \mathbb{R}^4$ defined by $T(x_1, x_2, x_3, x_4) = (x_1 + 2x_3 + x_4, -3x_1 + 2x_2 - x_4, 3x_2 + 9x_3 + 3x_4).$

Let A be the matrix of T (i.e., $T(\mathbf{x}) = A\mathbf{x}$).

- (i) Find A. (A mistake here will affect the rest of the problem.)
- (ii) Find a basis for Col A.
- (iii) Find a basis for Row A.
- (iv) What is the dimension of the kernel of T? (No details necessary.)
- (v) Is T onto? Give a reason for your answer.
- 2. (20) Let V be a two dimensional vector space with basis $\mathcal{B} = \{v_1, v_2\}$. Let a be a fixed scalar and let $T: V \to V$ be a linear transformation such that $T(v_1) = av_2$ and $T(v_2) = av_1$.
- (i) What is the matrix $[T]_{\mathcal{B}}$?
- (ii) Is $[T]_{\mathcal{B}}$ diagonalizable? Give reasons for your answer.
- (iii) If $v \in V$ and $[v]_{\mathcal{B}} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$, what is $[T(v)]_{\mathcal{B}}$?
- 3. (20) Find a basis for all vectors of the form

the subspace of
$$\mathbb{R}^n$$

$$\begin{pmatrix} a-2b+5c\\ 2a+5b-8c\\ -a-4b+7c\\ 3a+b+c \end{pmatrix},$$

for $a, b, c \in \mathbb{R}$.

4. (20) Consider the matrix

$$\begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & -2 \\ -1 & 1 & 3 \end{pmatrix}.$$

Find all eigenvalues and a basis for each eigenspace.

- 5. (30) True False. In each of the following, circle T if the statement is always true; circle F otherwise.
- (a). If $\{v_1, \ldots, v_k\}$ is a linearly independent set of vectors in a vector space V, then every vector in $\mathrm{Span}\{v_1, \ldots, v_k\}$ can be written in exactly one way as a linear combination of v_1, \ldots, v_k .
- (b). If the $n \times n$ matrices A and B are both similar to an $n \times n$ matrix C, then A is similar to B.
 - (c). Col A is the set of all vectors that can be written as Ax for some x.
 - (d). If the nullspace of a 5×6 matrix A is 4-dimensional, then Col A is $\mathbf{1}$ dimensional.
 - (e). Col $A = \text{Row } A^T$, for any matrix A.

٠. .

- (f). If A is a 7×5 matrix, then the largest possible rank of A is 5.
- (g). If 0 is an eigenvalue of an $n \times n$ matrix A, then A is not invertible.
- (h). If a 4×4 matrix A has exactly 3 distinct eigenvalues, then A is not diagonalizable.
- (i). The set of all eigenvectors of an $n \times n$ matrix A is a subspace of \mathbb{R}^n .
- (j). If A, P and D are $n \times n$ matrices such that P is invertible, D is diagonal and $A = PDP \mathbf{I}$ then the columns of P are eigenvectors of A.