The Invertible Matrix Theorem

Let A be an $n \times n$ matrix. Then the following are equivalent:
a. The matrix A is invertible (non-singular).
b. The matrix A is row equivalent to I_{n}.
c. The matrix A has n pivot positions.
d. The equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.
e. The columns of A form a linearly independent set.
f. The linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ is one-to-one.
g. For each $\mathbf{b} \in \mathbb{R}^{n}$, the equation $A \mathbf{x}=\mathbf{b}$ has a unique solution.
h. The columns of A span \mathbb{R}^{n}.
i. The linear transformation $\mathbf{x} \mapsto A \mathbf{x}$ is onto.
j. There is an $n \times n$ matrix C such that $C A=I_{n}$.
k. There is an $n \times n$ matrix D such that $A D=I_{n}$.
l. The matrix A^{T} is invertible.
m . The columns of A form a basis for \mathbb{R}^{n}.
n. The column space of A is $\mathbb{R}^{n}\left(\operatorname{Col} A=\mathbb{R}^{n}\right)$.
o. The dimension of the column space of A is $n(\operatorname{dim} \operatorname{Col} A=n)$.
p. The rank of A is $n(\operatorname{rank} A=n)$.
q. The null space of A is $\{\mathbf{0}\}(\operatorname{Nul} A=\{\mathbf{0}\})$.
r. The dimension of the null space of A is $0(\operatorname{dim} \operatorname{Nul} A=0)$.
s. The number 0 is not an eigenvalue of A.
t. The determinant of A is not zero $(\operatorname{det} A \neq 0)$.
u. The orthogonal complement of the column space of A is $\{\mathbf{0}\}\left((\operatorname{Col} A)^{\perp}=\{\mathbf{0}\}\right)$.
v. The orthogonal complement of the null space of A is $\mathbb{R}^{n}\left((\mathrm{Nul} A)^{\perp}=\mathbb{R}^{n}\right)$.
w. The row space of A is \mathbb{R}^{n} (Row $A=\mathbb{R}^{n}$).
x. The matrix A had n non-zero singular values.

