The Invertible Matrix Theorem

Let A be an $n \times n$ matrix. Then the following are equivalent:

- a. The matrix A is invertible (non-singular).
- b. The matrix A is row equivalent to I_n .
- c. The matrix A has n pivot positions.
- d. The equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- e. The columns of A form a linearly independent set.
- f. The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is one-to-one.
- g. For each $\mathbf{b} \in \mathbb{R}^n$, the equation $A\mathbf{x} = \mathbf{b}$ has a unique solution.
- h. The columns of A span \mathbb{R}^n .
- i. The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is onto.
- j. There is an $n \times n$ matrix C such that $CA = I_n$.
- k. There is an $n \times n$ matrix D such that $AD = I_n$.
- l. The matrix A^T is invertible.
- m. The columns of A form a basis for \mathbb{R}^n .
- n. The column space of A is \mathbb{R}^n (Col $A = \mathbb{R}^n$).
- o. The dimension of the column space of A is n (dim Col A = n).
- p. The rank of A is n (rank A = n).
- q. The null space of A is $\{\mathbf{0}\}$ (Nul $A = \{\mathbf{0}\}$).
- r. The dimension of the null space of A is 0 (dim Nul A = 0).
- s. The number 0 is not an eigenvalue of A.
- t. The determinant of A is not zero $(\det A \neq 0)$.
- u. The orthogonal complement of the column space of A is $\{0\}$ ((Col A)^{\perp} = $\{0\}$).
- v. The orthogonal complement of the null space of A is \mathbb{R}^n ((Nul A)^{\perp} = \mathbb{R}^n).
- w. The row space of A is \mathbb{R}^n (Row $A = \mathbb{R}^n$).
- x. The matrix A had n non-zero singular values.