Application of Linear Algebra to Economics

- Wassily Leontief
- divided U.S. economy into 500 sectors (e.g. coal industry, automotive industry, communications)
- for each sector, wrote linear equation describing how sector distributes output to other sectors
- Leontief "input-output" (or "production") model

Terminology

- n : number of sectors in nation's economy
- $\mathbf{x} \in \mathbb{R}^{n}$ production vector: output of each sector for year
- $\mathbf{d} \in \mathbb{R}^{n}$ final demand vector: value of goods and services demanded from sectors by non-productive part of economy
- intermediate demand: inputs producers need for production

Leontief's question: is there a production level such that the total amount produced equals the total demand for production?

Is there an $\mathbf{x} \in \mathbb{R}^{n}$ such that $\mathbf{x}=$ intermediate demand $+\mathbf{d}$?

The Model

- hold prices of goods and services constant
- measure unit of input and output in millions of dollars
- basic assumption: for each sector, there is a unit consumption vector \mathbf{c} listing inputs needed per unit of output of sector

Example ($n=3$)

	Inputs Consumed per Unit of Output		
Purchased from	Manufacturing	Agriculture	Services
Manufacturing	0.50	0.40	0.20
Agriculture	0.20	0.30	0.10
Services	0.10	0.10	0.30
	\uparrow	\uparrow	\uparrow
	\mathbf{c}_{1}	\mathbf{c}_{2}	\mathbf{c}_{3}

What will the manufacturing sector consume if it produces 100 units?

50 units from manufacturing, 20 units from agriculture, 10 units from services

Suppose sector

- has unit consumption vector \mathbf{c}
- produces x units of output

What is sector's intermediate demand? $x \mathbf{c}$
total intermediate demand $=x_{1} \mathbf{c}_{1}+\cdots+x_{n} \mathbf{c}_{n}=C \mathbf{x}$, where C is consumption matrix $C=\left[\mathbf{c}_{1} \cdots \mathbf{c}_{n}\right]$

Leontief's question: is there an $\mathbf{x} \in \mathbb{R}^{n}$ such that $\mathbf{x}=C \mathbf{x}+\mathbf{d}$? Alternatively, is there an $\mathbf{x} \in \mathbb{R}^{n}$ such that $\left(I_{n}-C\right) \mathbf{x}=\mathbf{d}$?

Example ($n=3$)

	Inputs Consumed per Unit of Output		
Purchased from	Manufacturing	Agriculture	Services
Manufacturing	0.50	0.40	0.20
Agriculture	0.20	0.30	0.10
Services	0.10	0.10	0.30
	\uparrow	\uparrow	\uparrow
	\mathbf{c}_{1}	\mathbf{c}_{2}	\mathbf{c}_{3}

$$
C=\left[\begin{array}{lll}
0.50 & 0.40 & 0.20 \\
0.20 & 0.30 & 0.10 \\
0.10 & 0.10 & 0.30
\end{array}\right]
$$

Example ($n=3$)

Suppose the final demand is 50 units for manufacturing, 30 units for agriculture, and 20 units for services. What is the production level that will satisfy this demand?

$$
\begin{gathered}
I_{3}-C=\left[\begin{array}{ccc}
0.50 & -0.40 & -0.20 \\
-0.20 & 0.70 & -0.10 \\
-0.10 & -0.10 & 0.70
\end{array}\right] \\
{\left[\begin{array}{cccc}
0.50 & -0.40 & -0.20 & 50 \\
-0.20 & 0.70 & -0.10 & 30 \\
-0.10 & -0.10 & 0.70 & 20
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 0 & 0 & 225.9 \\
0 & 1 & 0 & 118.5 \\
0 & 0 & 1 & 77.8
\end{array}\right]}
\end{gathered}
$$

- $I_{n}-C$ invertible implies $\mathbf{x}=\left(I_{n}-C\right)^{-1} \mathbf{d}$
- in most practical cases, $I_{n}-C$ is invertible
column sum: sum of entries in column
Theorem: Let C be the consumption matrix for an economy and \mathbf{d} the final demand vector. If C and \mathbf{d} have non-negative entries and if each column sum of C is less than 1 , then $I-C$ is invertible, and the production vector

$$
\mathbf{x}=(I-C)^{-1} \mathbf{d}
$$

has non-negative entries and is the unique solution of

$$
\mathbf{x}=C \mathbf{x}+\mathbf{d}
$$

Note: sector should need less than one unit's worth of inputs to produce one unit of output, so column sums of consumption matrix should all be less than 1

- suppose \mathbf{d} is presented to various sectors at start of year and sectors set $\mathbf{x}=\mathbf{d}$
- intermediate demand $=C \mathbf{d}$
- to meet demand of $C \mathbf{d}$, sectors need inputs of $C(C \mathbf{d})=C^{2} \mathbf{d}$, creating second round of intermediate demand of $C\left(C^{2} \mathbf{d}\right)=C^{3} \mathbf{d}$
- theoretically, process continues indefinitely

Demand Inputs Needed
Final Demand
d $\quad C \mathbf{d}$
Intermediate demand
round 1
$C \mathbf{d} \quad C(C \mathbf{d})=C^{2} \mathbf{d}$
round 2
$C^{2} \mathbf{d} \quad C\left(C^{2} \mathbf{d}\right)=C^{3} \mathbf{d}$
round 3
$C^{3} \mathbf{d} \quad C\left(C^{3} \mathbf{d}\right)=C^{4} \mathbf{d}$

$$
\begin{aligned}
\mathbf{x} & =\mathbf{d}+C \mathbf{d}+C^{2} \mathbf{d}+C^{3} \mathbf{d}+\cdots \\
& =\left(I_{n}+C+C^{2}+C^{3}+\cdots\right) \mathbf{d}
\end{aligned}
$$

- $\left(I_{n}-C\right)\left(I_{n}+C+C^{2}+\cdots+C^{m}\right)=I_{n}-C^{m+1}$
- if all column sums of C are less than 1 , then
$-I_{n}-C$ is invertible
$-C^{m} \rightarrow 0$ as $m \rightarrow \infty$
$-I_{n}-C^{m+1} \rightarrow I_{n}$ as $m \rightarrow \infty$ (idea: $0<t<1$ implies $t^{m} \rightarrow 0$ as $m \rightarrow \infty$)
- $\left(I_{n}-C\right)^{-1} \approx I_{n}+C+C^{2}+\cdots+C^{m}$; i.e., right-hand side can be made as close to $\left(I_{n}-C\right)^{-1}$ as we want by taking m large enough
- in actual input-output models, powers of consumption matrix C approach 0 quickly, and for given final demand \mathbf{d}, vectors $C^{m} \mathbf{d}$ approach $\mathbf{0}$ quickly
- entries in $\left(I_{n}-C\right)^{-1}$ can be used to predict how production \mathbf{x} will have to change when \mathbf{d} changes: entries in column j of $\left(I_{n}-C\right)^{-1}$ are increased amounts various sectors will have to produce to satisfy increase of one unit in final demand for output from sector j

