Application of Linear Algebra to Economics

- Wassily Leontief
 - divided U.S. economy into 500 sectors (e.g. coal industry, automotive industry, communications)
 - for each sector, wrote linear equation describing how sector distributes output to other sectors
- Leontief "input-output" (or "production") model

Terminology

1

- *n*: number of sectors in nation's economy
- $\mathbf{x} \in \mathbb{R}^n$ production vector: output of each sector for year
- $\mathbf{d} \in \mathbb{R}^n$ final demand vector: value of goods and services demanded from sectors by non-productive part of economy
- intermediate demand: inputs producers need for production

Leontief's question: is there a production level such that the total amount produced equals the total demand for production?

Is there an $\mathbf{x} \in \mathbb{R}^n$ such that $\mathbf{x} =$ intermediate demand $+ \mathbf{d}$?

The Model

- hold prices of goods and services constant
- measure unit of input and output in millions of dollars
- basic assumption: for each sector, there is a *unit consumption vector* **c** listing inputs needed per unit of output of sector

 $\mathbf{3}$

	Example (n	= 3)	
	Inputs Consum	ed per Unit of	f Output
Purchased from	Manufacturing	Agriculture	Services
Manufacturing	0.50	0.40	0.20
Agriculture	0.20	0.30	0.10
Services	0.10	0.10	0.30
	1	\uparrow	\uparrow
	\mathbf{c}_1	\mathbf{c}_2	\mathbf{c}_3

What will the manufacturing sector consume if it produces 100 units?

 $50~{\rm units}$ from manufacturing, $20~{\rm units}$ from agriculture, $10~{\rm units}$ from services

Suppose sector

- $\bullet\,$ has unit consumption vector ${\bf c}$
- produces x units of output

What is sector's intermediate demand? $x\mathbf{c}$

total intermediate demand $= x_1 \mathbf{c}_1 + \cdots + x_n \mathbf{c}_n = C \mathbf{x}$, where C is consumption matrix $C = [\mathbf{c}_1 \cdots \mathbf{c}_n]$

Leontief's question: is there an $\mathbf{x} \in \mathbb{R}^n$ such that $\mathbf{x} = C\mathbf{x} + \mathbf{d}$? Alternatively, is there an $\mathbf{x} \in \mathbb{R}^n$ such that $(I_n - C)\mathbf{x} = \mathbf{d}$?

	Inputs Consum	ed per Unit o	f Output
Purchased from	Manufacturing	Agriculture	Services
Manufacturing	0.50	0.40	0.20
Agriculture	0.20	0.30	0.10
Services 0.10		0.10	0.30
	Ť	\uparrow	Ť
	\mathbf{c}_1	\mathbf{c}_2	\mathbf{c}_3
	$\begin{bmatrix} 0.50 & 0.40 \end{bmatrix}$	0.20	
	$C = \begin{bmatrix} 0.20 & 0.30 \end{bmatrix}$	0.10	
	$C = \begin{bmatrix} 0.50 & 0.40 \\ 0.20 & 0.30 \\ 0.10 & 0.10 \end{bmatrix}$	0.30	

Example (n = 3)

Suppose the final demand is 50 units for manufacturing, 30 units for agriculture, and 20 units for services. What is the production level that will satisfy this demand?

$$I_3 - C = \begin{bmatrix} 0.50 & -0.40 & -0.20 \\ -0.20 & 0.70 & -0.10 \\ -0.10 & -0.10 & 0.70 \end{bmatrix}$$

0.50	-0.40	-0.20	50		1	0	0	225.9
-0.20	0.70	-0.10	30	\sim	0	1	0	118.5
-0.10	-0.10	0.70	20		0	0	1	77.8

1			
ſ	7	٢.	

- $I_n C$ invertible implies $\mathbf{x} = (I_n C)^{-1} \mathbf{d}$
- in most practical cases, $I_n C$ is invertible

column sum: sum of entries in column

<u>THEOREM</u>: Let C be the consumption matrix for an economy and **d** the final demand vector. If C and **d** have non-negative entries and if each column sum of C is less than 1, then I - C is invertible, and the production vector

$$\mathbf{x} = (I - C)^{-1}\mathbf{d}$$

has non-negative entries and is the unique solution of

$$\mathbf{x} = C\mathbf{x} + \mathbf{d}.$$

<u>Note</u>: sector should need less than one unit's worth of inputs to produce one unit of output, so column sums of consumption matrix should all be less than 1

- suppose d is presented to various sectors at start of year and sectors set $\mathbf{x} = \mathbf{d}$
- intermediate demand = $C\mathbf{d}$
- to meet demand of $C\mathbf{d}$, sectors need inputs of $C(C\mathbf{d}) = C^2\mathbf{d}$, creating second round of intermediate demand of $C(C^2\mathbf{d}) = C^3\mathbf{d}$
- theoretically, process continues indefinitely

9

Final Demand	Demand d	Inputs Needed
Intermediate demand	u	Cu
round 1	$C\mathbf{d}$	$C(C\mathbf{d}) = C^2\mathbf{d}$
round 2	$C^2\mathbf{d}$	$C(C^2\mathbf{d}) = C^3\mathbf{d}$
round 3	$C^3\mathbf{d}$	$C(C^3\mathbf{d}) = C^4\mathbf{d}$
÷	÷	÷
$\mathbf{x} = \mathbf{d} + C\mathbf{d} - \mathbf{d} - \mathbf{d} = (I_n + C)^T \mathbf{d} - \mathbf$		

- $(I_n C)(I_n + C + C^2 + \dots + C^m) = I_n C^{m+1}$
- if all column sums of C are less than 1, then
 - $-I_n C$ is invertible
 - $C^m \to 0 \text{ as } m \to \infty$
 - $I_n C^{m+1} \to I_n \text{ as } m \to \infty \text{ (idea: } 0 < t < 1 \text{ implies } t^m \to 0 \text{ as } m \to \infty \text{)}$
- $(I_n C)^{-1} \approx I_n + C + C^2 + \dots + C^m$; i.e., right-hand side can be made as close to $(I_n - C)^{-1}$ as we want by taking *m* large enough

11

- in actual input-output models, powers of consumption matrix C approach 0 quickly, and for given final demand d, vectors C^md approach 0 quickly
- entries in $(I_n C)^{-1}$ can be used to predict how production **x** will have to change when **d** changes: entries in column j of $(I_n C)^{-1}$ are increased amounts various sectors will have to produce to satisfy increase of one unit in final demand for output from sector j