
Math 22 Exam 1

Part I

1. (12) Complete the following definitions.

(a) An elementary row operation on a matrix is one of the following:

(b) The set {v1, . . . ,vp} of vectors in R
n is linearly dependent if

(c) An n × n matrix A is invertible if
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2. (4) Let T : R
n → R

m be a linear transformation. When is T one-to-one?

3. (4) Let A be an n × n matrix. Give 4 conditions on A, each of which is equivalent to A

being invertible (do not use the definition).

4. (5) For each of the following, fill in the blank using the appropriate letter from the list
below so that the given statement is always true. You do not need to justify your answer.

(A) are linearly dependent
(B) are linearly independent
(C) span R

m

(D) span R
n

(E) none of the above makes the statement always true

(a) If A is an m× n matrix and the equation Ax = b is consistent for some b ∈ R
m, then

the columns of A .

(b) If v1, . . . ,vn ∈ R
m such that the vector equation x1v1 + · · · + xnvn = 0 has only the

trivial solution, then v1, . . . ,vn .

(c) If A is an m × n matrix, then the columns of A whenever m < n.

(d) Let T : R
n → R

m be a linear transformation with standard matrix A. Then T maps
R

n onto R
m if and only if the columns of A .

(e) Let A be an m × n matrix and B an n × p matrix. If v ∈ R
p such that Bv 6= 0 and

(AB)v = 0, then the columns of A .
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5. (10) For each of the following statements, circle either T for “True” or F for “False.” You
do not need to justify your answers.

T F (a) The equation Ax = 0 has the trivial solution if and only if there are no free
variables.

T F (b) Let A be a 4 × 4 matrix with columns a1, a2, a3, a4. If

b = πa1 − 17a3 +
1√
2
a4,

then the equation Ax = b is consistent.

T F (c) If none of the vectors in the set S = {v1,v2,v3} of vectors in R
3 is a multiple

of one of the other vectors, then S is a linearly independent set.

T F (d) If w is a linear combination of u,v ∈ R
n, then u is a linear combination of v

and w.

T F (e) If {v1,v2,v3} is a linearly dependent set of vectors in R
3, then {v1,v2} is also

linearly dependent.

T F (f) If T is a mapping such that T (0) = 0, then T is linear.

T F (g) If T is a mapping that is one-to-one, then T is onto.

T F (h) If T : R
2005 → R

2006 is a linear transformation, then T cannot map R
2005 onto

R
2006.

T F (i) If T : R
2006 → R

2005 is a linear transformation, then T cannot be one-to-one.

T F (j) If A and B are invertible n× n matrices, then AB is invertible and (AB)−1 =
A−1B−1.
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Part II

Your solutions to this part of the exam are due at the beginning of class tomorrow (October
13). Fully justify your solutions, and write them neatly on 8.5′′ × 11′′ sheets of paper; if you
use more than one sheet of paper, staple your pages together in the upper left-hand corner.
Use only a (non-colored) pencil or a pen with either blue or black ink.

You may refer only to your text and class notes. Otherwise, you are to work alone and
to neither receive nor provide assistance to anyone else.

6. (7) Let

A =





1 2 −3 1 1
−1 −1 4 −1 6
−2 −4 7 −1 1



 .

(a) Compute the reduced echelon form of A.

(b) Write the linear system for which A is the augmented matrix, and find the general
solution of that system.

7. (8) Let

A =





1 0 1
−2 1 −1
2 −1 2



 , e1 =





1
0
0



 , e2 =





0
1
0



 , e3 =





0
0
1



 .

(a) Find the inverse of A.

(b) Use part (a) to solve the systems Ax = ei for i = 1, 2, 3.

(c) Let a1, a2, a3 be the columns of A, and let T : R
3 → R

2 be the linear transformation
satisfying

T (a1) =

[

−1
1

]

, T (a2) =

[

0
2

]

, T (a3) =

[

2
3

]

.

Find the standard matrix for T .

8. (10) Let T : R
3 → R

3 be the linear transformation given by

T (x1, x2, x3) = (2x3, 3x1 + x2, 2x1 − 2x3).

(a) Find a matrix A such that T (x) = Ax for all x ∈ R
3.

(b) Is T one-to-one? Is T onto?

(c) Is there a vector u 6= 0 such that T (u) = u?

9. (5) Let C be a 5 × 7 matrix and D a 7 × 5 matrix. Can DC be invertible?

10. (5) Suppose a linear transformation T : R
n → R

n has the property that T (u) = T (v)
for some pair of distinct vectors u,v ∈ R

n. Can T map R
n onto R

n? Why or why not?
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This exam has two parts. The first part you must complete during class today (October 12).
Your solutions to the second part are due at the beginning of class tomorrow (October 13).
Your solutions to the second part should be fully justified and neatly written on 8.5′′ × 11′′

sheets of paper; if you use more than one sheet of paper, staple your pages together in the
upper left-hand corner. Use only a (non-colored) pencil or a pen with either blue or black
ink.

You may refer to your text and class notes only on the take-home part of this exam.
Otherwise, you are to work alone and to neither receive nor provide assistance to anyone
else.

Problem Points Score

1 12

2 4

3 4

4 5

5 10

6 7

7 8

8 10

9 5

10 5

Style Points 5

Total 75


