
Math 22 Final Exam 1

1. (36 points) Determine if the following statements are true or false. In each case, give
either a short justification or example (as appropriate) to justify your conclusion.

T F (a) If A is a 4 × 4 matrix with characteristic polynomial

λ(λ − 1)(λ + 1)(λ + e),

then A is diagonalizable.

ANS: True. The matrix A has four distinct eigenvalues (0, 1, −1, and −e) and so is
diagonalizable by Theorem 5.3.6.

T F (b) If A is invertible, then A is diagonalizable.

ANS: False. Let

A =

[

1 0
1 1

]

.

Then the characteristic polynomial of A is

∣

∣

∣

∣

1 − λ 0
1 1 − λ

∣

∣

∣

∣

= (1 − λ)2,

so the only eigenvalue of A is 1, with multiplicity 2. Since

A − I2 =

[

0 0
1 0

]

∼
[

1 0
0 0

]

,

all the eigenvectors of A are multiples of (0, 1); i.e., the 1-eigenspace of A is 1-dimensional.
Thus, Theorem 5.3.7 implies that A is not diagonalizable.

T F (c) If A is a symmetric matrix such that A3 = 0, then A = 0.

ANS: True. Suppose Ax = λx for some non-zero x. Then

0 = A3x = A2(λx) = λ(A2x) = λ2(Ax) = λ3x

implies λ3 = 0; hence, the only eigenvalue of A is 0. But A symmetric means that A is
orthogonally diagonalizable by the Spectral Theorem for Symmetric Matrices. In particular,
A is diagonalizable. Then the Diagonalization Theorem implies that A = PDP−1 for some
diagonal matrix D and some orthogonal matrix P . Since the entries on the main diagonal
of D are eigenvalues of A, D = 0, and A = 0.

T F (d) If A is an m × n matrix with orthonormal columns, then n ≤ m.

ANS: True. Recall that since the columns of A are orthonormal, each of the columns of
A must be non-zero. Thus, the columns of A form an orthogonal set of non-zero vectors in
R

m. By Theorem 6.2.4, this means that the columns of A form a linearly independent set,
so A cannot have more columns than rows by Theorem 1.7.8; i.e., n ≤ m.

T F (e) If A is an n× n symmetric matrix, then for all x,y ∈ R
n, (Ax) · y = x · (Ay).

ANS: True. Let x,y ∈ R
n. Then by the definition of the dot product, Theorem 2.1.3(d),

the fact that AT = A (since A is symmetric), and the associativity of matrix multiplication,

(Ax) · y = (Ax)T y = xT (AT y) = xT (Ay) = x · (Ay).

(Problem 1 continued on next page)
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T F (f) If A and B are invertible n × n matrices, then so is A + B.

ANS: False. Let

A =

[

1 0
0 1

]

and B =

[

−1 0
0 −1

]

.

Since detA = 1 = detB, A and B are invertible by the Invertible Matrix Theorem. But

A + B =

[

0 0
0 0

]

and det(A + B) = 0, so A + B is not invertible by the Invertible Matrix Theorem.

T F (g) If A is a 3 × 5 matrix and dim Nul A = 2, then Ax = b is consistent for all
b ∈ R

3.

ANS: True. By the definition of rank A and the Rank Theorem,

dim Col A = rank A = 5 − dim Nul A = 5 − 2 = 3;

hence, Col A is a 3-dimensional subspace of R
3, so Col A = R

3. The box following Theorem
4.2.3 thus implies that Ax = b is consistent for all b ∈ R

3.

T F (h) The set of n × n matrices A satisfying det A = 0 is a subspace of Mn×n, the
set of n × n matrices.

ANS: False. Let

A =

[

1 0
0 0

]

and B =

[

0 0
0 1

]

,

and note that detA = 0 = detB. But

A + B =

[

1 0
0 1

]

has determinant 1; i.e., the set of n× n matrices A satisfying det A = 0 is not closed under
addition.

T F (i) If u and v are in R
2 and det

[

u v
]

= 10, then the area of the triangle in the
plane with vertices 0, u, and v is 10.

ANS: False. Let

u =

[

10
0

]

and v =

[

0
1

]

.

Then

det
[

u v
]

=

∣

∣

∣

∣

10 0
0 1

∣

∣

∣

∣

= 10,

but the triangle with vertices 0, u, and v is a right triangle with legs of length 1 and 10 and
hence has area 5.

2. (15 points) Suppose V and W are vector spaces and T : V → W is a linear transformation.
Let B = {v1, . . . ,vn} be a subset of V such that C = {T (v1), . . . , T (vn)} is a basis for W .

(a) Show that B must be a linearly independent set.

ANS: Suppose c1v1 + · · · + cnvn = 0 for some c1, . . . , cn ∈ R. Then T (c1v1 + · · · + cnvn) = T (0).
Since T is a linear transformation, this gives c1T (v1)+· · ·+cnT (vn) = 0, and C a linearly independent
set implies c1 = · · · = cn = 0. It follows that B must be a linearly independent set by definition.
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(b) Must T map V onto W ?

ANS: Yes. First note that since V is a vector space and B is a subset of V , any linear combination of
the vectors in B is in V . Since C is a basis for W , any x ∈ W has the form x = c1T (v1)+ · · ·+cnT (vn)
for some c1, . . . , cn ∈ R. But T a linear transformation implies x = T (c1v1 + · · · + cnvn).

(c) Must T be one-to-one?

ANS: No. Let T : R
2 → R be given by T (x, y) = x. Let v1 = (1, 0) and B = {v1}. Note that

C = {T (v1)} = {1} is a basis for R. But T (0, 0) = 0 = T (0, 1), so T is not one-to-one by definition.

3. (20 points) Let

A =





6 −3 −3
−3 6 −3
−3 −3 6



 .

Note that the characteristic polynomial of A is

−λ(λ − 9)2.

(a) Find an orthogonal basis for R
3 consisting of eigenvectors of A.

ANS: Note that by the Diagonalization Theorem, R
3 does have a basis consisting of eigenvectors

of A since A is symmetric and hence is orthogonally diagonalizable (by the Spectral Theorem for
Symmetric Matrices) and so is diagonalizable. In addition, the eigenvalues of A are 0, 9, and 9. Since
the sum of each row of A is 0, an eigenvector corresponding to the eigenvalue 0 is (1, 1, 1), so it remains
to find eigenvectors corresponding to the eigenvalue 9. But

A − 9I3 =





−3 −3 −3
−3 −3 −3
−3 −3 −3



 ∼





1 1 1
0 0 0
0 0 0





implies that (−1, 1, 0) and (−1, 0, 1) are linearly independent eigenvectors corresponding to the eigen-
value 9, and











1
1
1



 ,





−1
1
0



 ,





−1
0
1











is an eigenvector basis for R
3. To make this basis orthogonal, we use the Gram-Schmidt Process:

v1 =





1
1
1



 ,

v2 =





−1
1
0



 − 0v1 =





−1
1
0



 ,

v3 =





−1
0
1



 − 1

2
v2 − 0v1 =





− 1

2

− 1

2

1



 .

Then {v1,v2,v3} is an orthogonal basis for R
3 consisting of eigenvectors of A.

(Problem 3 continued on next page)
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(b) Find an orthogonal matrix P and a diagonal matrix D such that A = PDP T .

ANS: The matrix D is

D =





0 0 0
0 9 0
0 0 9



 .

To find the matrix P , we need to make the orthogonal basis we found in the last part an orthonormal

basis. Since

‖(1, 1, 1)‖ =
√

3, ‖(−1, 1, 0)‖ =
√

2, and ‖(−1/2,−1/2, 1)‖ =

√

3

2
,

we have

P =





1/
√

3 −1/
√

2 −1/
√

6

1/
√

3 1/
√

2 −1/
√

6

1/
√

3 0
√

2/3



 .

(c) Find a symmetric matrix B such that B2 = A.

ANS: Recall that since A = PDPT , where P and D are as in the last part, A2 = PD2PT . Thus, if

B =





1/
√

3 −1/
√

2 −1/
√

6

1/
√

3 1/
√

2 −1/
√

6

1/
√

3 0
√

2/3









0 0 0
0 3 0
0 0 3









1/
√

3 −1/
√

2 −1/
√

6

1/
√

3 1/
√

2 −1/
√

6

1/
√

3 0
√

2/3





T

,

then B is symmetric and B2 = A.

4. (9 points) Let −1 and 1 be eigenvalues of a matrix A. Suppose u1 and u2 are linearly
independent eigenvectors of A corresponding to −1, and suppose w1 and w2 are linearly
independent eigenvectors of A corresponding to 1. Show that {u1, u2, w1, w2} is a linearly
independent set.

ANS: Suppose c1, c2, c3, c4 ∈ R such that c1u1 + c2u2 + c3w1 + c4w2 = 0. Then c1u1 + c2u2 =
−c3w1 − c4w2 is in the eigenspace of A corresponding to −1 and the eigenspace of A corresponding
to 1. Since a non-zero vector cannot correspond to two distinct eigenvalues of A, this implies that
c1u1 + c2u2 = −c3w1 − c4w2 = 0. Then {u1, u2} and {w1, w2} linearly independent sets imply
c1, c2, c3, c4 are all zero, and by definition, {u1, u2, w1, w2} is a linearly independent set.

5. (15 points) Let

B =

{[

1 0
0 0

]

,

[

0 1
0 0

]

,

[

0 0
1 0

]

,

[

0 0
0 1

]}

be the standard basis for M2×2, the set of 2 × 2 matrices. Find the B-matrix for the linear
transformation T : M2×2 → M2×2 given by T (A) = AT .

ANS: Let

A1 =

[

1 0
0 0

]

, A2 =

[

0 1
0 0

]

, A3 =

[

0 0
1 0

]

, A4 =

[

0 0
0 1

]

,

and note that

[A1]B =









1
0
0
0









, [A2]B =









0
1
0
0









, [A3]B =









0
0
1
0









, [A4]B =









0
0
0
1









.
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Since T (A1) = A1, T (A2) = A3, T (A3) = A2, and T (A4) = A4,

[T ]B =









1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1









by definition.

6. (15 points) Let T : P2 → R
2 be a linear transformation, and let

B = {1, t, t2} and C =

{[

−1
1

]

,

[

0
3

]}

be bases for P2 and R
2, respectively. Suppose the matrix for T relative to the bases B and

C is

C[T ]B =

[

1 −1 0
2 3 1

]

.

(a) Find [−3 − t + 2t2]B.

ANS: By definition,

[−3 − t + 2t2]B =





−3
−1
2



 .

(b) Find [T (−3 − t + 2t2)]C.

ANS: By Equation (3) on page 328, [T (−3 − t + 2t2)]C = C [T ]B[−3 − t + 2t2]B, so

[T (−3 − t + 2t2)]C =

[

1 −1 0
2 3 1

]





−3
−1
2



 =

[

−2
−7

]

.

(c) Find T (−3 − t + 2t2).

ANS: Since

[T (−3 − t + 2t2)]C =

[

−2
−7

]

,

we have

T (−3 − t + 2t2) = −2

[

−1
1

]

− 7

[

0
3

]

=

[

2
−23

]

.

7. (10 points) For which real numbers a, b, c is the matrix

A =





1 0 0
a 17 0
b c 1




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diagonalizable?

ANS: Note that the eigenvalues of A are 1, 1, and 17 by Theorem 5.1.1. Thus, Theorem 5.3.7
implies that for A to be diagonalizable, the 1-eigenspace must be 2-dimensional. We must thus find
values for a, b, c such that the equation (A − I3)x = 0 has two free variables. Since

A − I3 =





0 0 0
a 16 0
b c 0



 ,

we need (b, c) = r(a, 16) for some r ∈ R. If a 6= 0, then b = ar implies r = b/a; hence, c = 16r =
16b/a. If a = 0, then b = ar and c = 16r imply b = 0 and c is any real number. It follows that the
matrix A is diagonalizable when either

0 6= a ∈ R, b ∈ R, and c =
16b

a

or
a = b = 0 and c ∈ R.

8. (15 points) Let

u1 =









1
0
−1
0









, u2 =









1
2
1
0









, y =









−2
1
0
3









,

and W = Span{u1,u2}.

(a) Find the orthogonal projection of y onto u1.

ANS: By definition, the orthogonal projection of y onto u1 is

y · u1

u1 · u1

u1 = −u1 =









−1
0
1
0









.

(b) Find proj
W

y.

ANS: Note that {u1,u2} is an orthogonal set, so by the Orthogonal Decomposition Theorem,

projW y =
y · u1

u1 · u1

u1 +
y · u2

u2 · u2

u2 =









−1
0
1
0









.

(c) Find the distance from y to W .

ANS: By the Best Approximation Theorem, the distance from y to W is

‖y − proj
W

y‖ = ‖(−2, 1, 0, 3)− (−1, 0, 1, 0)‖ = ‖(−1, 1,−1, 3)‖ =
√

12.
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9. (15 points) Show that if v is an eigenvector of an n × n matrix A and v corresponds to
a non-zero eigenvalue of A, then v ∈ Col A.

ANS: Let 0 6= λ ∈ R such that v is an eigenvector of A corresponding to λ. Then Av = λv by
definition, and λ 6= 0 implies v = λ−1(Av) = A(λ−1v); i.e., the equation Ax = v is consistent. It
follows from the box following Theorem 4.2.3 that v ∈ Col A.
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