Introduction to Proofs
 2006-09-21

An integer n is even if $n=2 k$ for some integer k.

1. Prove that if n is an even integer, then n^{2} is also an even integer.
2. Use induction to prove that for any integer $n \geq 1$,

$$
1^{2}+2^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6} .
$$

3. Let r be any real number not equal to 1 . Prove that for any integer $n \geq 1$,

$$
1+r+r^{2}+\cdots+r^{n}=\frac{1-r^{n+1}}{1-r}
$$

4. In the following statements, a, b, and c are integers.
(a) There is a unique integer, denoted $-a$, such that $a+(-a)=0=-a+a$.
(b) The integer 1 satisfies $a \cdot 1=a=1 \cdot a$.
(c) The integer 0 satisfies $a \cdot 0=0=0 \cdot a$.
(d) The operations \cdot and + satisfy $a \cdot(b+c)=(a \cdot b)+(a \cdot c)$.

Using only the above facts and what you know about $=$, prove that $-1 \cdot-1=1$.

