Workshop IV 2006-10-26

- 1. Let A be an $m \times n$ matrix and B an $n \times p$ matrix.
 - (a) Show that Nul $B \subseteq$ Nul AB. What does this tell you about dim Nul B and dim Nul AB?
 - (b) Show that Col $AB \subseteq$ Col A. What does this tell you about rank AB and rank A?
 - (c) Show that rank $AB \leq \min\{\operatorname{rank} A, \operatorname{rank} B\}$; i.e., show that rank $AB \leq \operatorname{rank} A$ and rank $AB \leq \operatorname{rank} B$.
- 2. Let $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ be a set of vectors in a vector space V. Prove that if for all $\mathbf{v} \in V$, the vector equation $c_1\mathbf{v}_1 + \cdots + c_p\mathbf{v}_p = \mathbf{v}$ has at most one solution, then $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ is a linearly independent set.