Workshop IV

2006-10-26

1. Let A be an $m \times n$ matrix and B an $n \times p$ matrix.
(a) Show that Nul $B \subseteq$ Nul $A B$. What does this tell you about $\operatorname{dim} \operatorname{Nul} B$ and $\operatorname{dim} \operatorname{Nul} A B$?
(b) Show that $\operatorname{Col} A B \subseteq \operatorname{Col} A$. What does this tell you about rank $A B$ and $\operatorname{rank} A$?
(c) Show that rank $A B \leq \min \{\operatorname{rank} A$, rank B; i.e., show that rank $A B \leq \operatorname{rank} A$ and $\operatorname{rank} A B \leq \operatorname{rank} B$.
2. Let $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ be a set of vectors in a vector space V. Prove that if for all $\mathbf{v} \in V$, the vector equation $c_{1} \mathbf{v}_{1}+\cdots+c_{p} \mathbf{v}_{p}=\mathbf{v}$ has at most one solution, then $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is a linearly independent set.
