Math 22 Fall 2013

Problem set 2: Due on Wed Oct 2

Show all your calculations. You can receive partial credit for partially correct work, even if the final solution is incorrect. Therefore, spell out step-by-step calculations, and explain your answers to open questions.

1. Let A be the matrix

$$
A=\left(\begin{array}{rrrr}
1 & 2 & 0 & 9 \\
2 & 1 & 1 & 21 \\
-3 & 0 & -2 & -27
\end{array}\right)
$$

Does the equation $A \mathbf{x}=\mathbf{b}$ have at least one solution \mathbf{x} in \mathbb{R}^{4} for every vector \mathbf{b} in \mathbb{R}^{3} ?
As always, show your numerical work, and justify your answer in words.
2. (a) Let A be the matrix,

$$
A=\left(\begin{array}{rrrr}
1 & 4 & -2 & 3 \\
1 & 7 & 0 & 5 \\
2 & 14 & 0 & 10 \\
-1 & -7 & 0 & -5
\end{array}\right)
$$

Write the solution of the homogeneous equation $A \mathbf{x}=\mathbf{0}$ as a span of vectors.
(b) Is the equation $A \mathbf{x}=\mathbf{b}$ consistent for all possible vectors \mathbf{b} in \mathbb{R}^{4} ?
(c) Assuming that \mathbf{b} is a vector in \mathbb{R}^{4} for which $A \mathbf{x}=\mathbf{b}$ is consistent, how many free variables (or how many parameters) will there be in the description of the solution set?
3. Determine if the vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ below are linearly independent.

$$
\mathbf{u}=\left(\begin{array}{c}
2 \\
-2 \\
0
\end{array}\right), \mathbf{v}=\left(\begin{array}{l}
3 \\
1 \\
4
\end{array}\right), \mathbf{w}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
$$

4. True or False?

For True/False questions you do not have to justify your answer!
(a) If A is a 7×10 matrix, then the equation $A \mathbf{x}=\mathbf{b}$ has a solution for all possible vectors \mathbf{b} in \mathbb{R}^{7}.
(b) If A is a 7×10 matrix, then the equation $A \mathbf{x}=\mathbf{0}$ has nontrivial solutions.
(c) If $A \mathbf{x}=\mathbf{0}$ has infinitely many solutions then $A \mathbf{x}=\mathbf{b}$ cannot have a unique solution, no matter what choice you make for \mathbf{b}.
(d) If 3 vectors in \mathbb{R}^{3} lie in the same plane then they are linearly dependent.
(e) If a set of vectors in \mathbb{R}^{4} is linearly independent, then there are at least 4 vectors in the set.

