Math 22 Fall 2013

Homework 3: Due on Wed Oct 9

Show all your calculations. You can receive partial credit for partially correct work, even if the final solution is incorrect. Therefore, spell out step-by-step calculations, and explain your answers to open questions.

1. Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ be the multivariable function given by the formula

$$
T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+2 x_{2}-x_{3}, 3 x_{1}+6 x_{2}, x_{1}+2 x_{2}, x_{2}+4 x_{3}\right)
$$

(a) T is a linear transformation. What is the standard matrix A of T ?
(b) Is the transformation T one-to-one? Justify your answer.
(c) Is the transformation T onto? Justify your answer.
2. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation that corresponds to a rotation in space around the x_{3}-axis by the angle $\pi / 3$ (or 60°). We use the right-hand rule to determine the direction of the rotation.
(a) What is the standard matrix A of the transformation T ?
(b) Use the formula $T(\mathbf{x})=A \mathbf{x}$ to calculate the image of the point $\mathbf{x}=(2,-3,7)$ under the transformation T.
3. Let A, B, C be the following matrices

$$
A=\left(\begin{array}{rr}
2 & 3 \\
-1 & 1 \\
0 & 5
\end{array}\right) \quad B=\left(\begin{array}{ll}
4 & 1 \\
0 & 3
\end{array}\right) \quad C=\left(\begin{array}{rr}
2 & -1 \\
-2 & 0
\end{array}\right)
$$

(a) Calculate $A B, A C$, and then add $A B$ and $A C$ to get $A B+A C$.
(b) Calculate $B+C$ and then multiply A and $B+C$ to get $A(B+C)$.

Note. Since always $A(B+C)=A B+A C$, your final answer in item (b) should be the same as that in (a), but the calculations are different.
(c) Is $C B=B C$ in this case?

