Math 22 Fall 2013

Problem set 4: Due on Wed Oct 16

Show all your calculations. You can receive partial credit for partially correct work, even if the final solution is incorrect. Therefore, spell out step-by-step calculations, and explain your answers to open questions.

1. (a) Calculate the inverse matrix A^{-1} of

$$A = \begin{pmatrix} 3 & -4 & 2 & 1 \\ 3 & 0 & 1 & 0 \\ 0 & 2 & 0 & -1 \\ 1 & -1 & 1 & 0 \end{pmatrix}$$

(b) Use the inverse matrix A^{-1} to find the unique solution of the linear system below without doing more row reductions.

$3x_1$	_	$4x_2$	+	$2x_3$	+	x_4	=	1
$3x_1$			+	x_3			=	2
		$2x_2$			_	x_4	=	3
x_1	_	x_2	+	x_3			=	4

2. Consider the matrix

$$B = \begin{pmatrix} 2 & 4 & 2 & 13 & 2 \\ 1 & 2 & 0 & 4 & -2 \\ 2 & 4 & -1 & 8 & -2 \\ 1 & 2 & -1 & 3 & -2 \end{pmatrix}$$

- (a) Find a basis for NulB, which is a subspace of \mathbb{R}^5 .
- (b) Find a basis for $\operatorname{Col} B$, which is a subspace of \mathbb{R}^4 .
- 3. (a) Explain in your own words why it is true that if NulA is just the point $\{0\}$, then the solution of an equation $A\mathbf{x} = \mathbf{b}$ has at most one solution.
 - (b) Explain in your own words why it is true that if ColA is all of \mathbb{R}^m (for a $m \times n$ matrix A) then $A\mathbf{x} = \mathbf{b}$ has at least one solution for every possible \mathbf{b} .
- 4. For True/False questions you do not have to justify your answer!
 - (a) If A is a 7×7 matrix with 6 pivots then NulA has dimension 6.
 - (b) If A is an invertible matrix, then $(A^T)^{-1}$ and $(A^{-1})^T$ are the same matrix.
 - (c) If A is an $n \times n$ matrix, and there exists another square matrix B with AB = I, then the equation $A\mathbf{x} = \mathbf{b}$ has at least one solution for every possible **b** in \mathbb{R}^n .
 - (d) If A and B are invertible matrices, then the product AB is also invertible.
 - (e) Given vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ in \mathbb{R}^n , the set of all linear combinations of these vectors is a subspace of \mathbb{R}^n .