Math 22 Fall 2013

Problem set 4: Due on Wed Oct 16

Show all your calculations. You can receive partial credit for partially correct work, even if the final solution is incorrect. Therefore, spell out step-by-step calculations, and explain your answers to open questions.

1. (a) Calculate the inverse matrix A^{-1} of

$$
A=\left(\begin{array}{rrrr}
3 & -4 & 2 & 1 \\
3 & 0 & 1 & 0 \\
0 & 2 & 0 & -1 \\
1 & -1 & 1 & 0
\end{array}\right)
$$

(b) Use the inverse matrix A^{-1} to find the unique solution of the linear system below without doing more row reductions.

$$
\begin{aligned}
3 x_{1}-4 x_{2}+2 x_{3}+x_{4} & =1 \\
3 x_{1} & +x_{3} \\
& =2 \\
x_{1}-2 x_{2} & -x_{4}
\end{aligned}=3 \begin{aligned}
& \\
& x_{2}
\end{aligned}
$$

2. Consider the matrix

$$
B=\left(\begin{array}{rrrrr}
2 & 4 & 2 & 13 & 2 \\
1 & 2 & 0 & 4 & -2 \\
2 & 4 & -1 & 8 & -2 \\
1 & 2 & -1 & 3 & -2
\end{array}\right)
$$

(a) Find a basis for $\operatorname{Nul} B$, which is a subspace of \mathbb{R}^{5}.
(b) Find a basis for $\operatorname{Col} B$, which is a subspace of \mathbb{R}^{4}.
3. (a) Explain in your own words why it is true that if $\operatorname{Nul} A$ is just the point $\{\mathbf{0}\}$, then the solution of an equation $A \mathbf{x}=\mathbf{b}$ has at most one solution.
(b) Explain in your own words why it is true that if $\operatorname{Col} A$ is all of \mathbb{R}^{m} (for a $m \times n$ matrix A) then $A \mathbf{x}=\mathbf{b}$ has at least one solution for every possible \mathbf{b}.
4. For True/False questions you do not have to justify your answer!
(a) If A is a 7×7 matrix with 6 pivots then $\operatorname{Nul} A$ has dimension 6 .
(b) If A is an invertible matrix, then $\left(A^{T}\right)^{-1}$ and $\left(A^{-1}\right)^{T}$ are the same matrix.
(c) If A is an $n \times n$ matrix, and there exists another square matrix B with $A B=I$, then the equation $A \mathbf{x}=\mathbf{b}$ has at least one solution for every possible \mathbf{b} in \mathbb{R}^{n}.
(d) If A and B are invertible matrices, then the product $A B$ is also invertible.
(e) Given vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}$ in \mathbb{R}^{n}, the set of all linear combinations of these vectors is a subspace of \mathbb{R}^{n}.

