Math 22 Fall 2013

Problem set 5: Due on Wed Oct 23

Show all your calculations. You can receive partial credit for partially correct work, even if the final solution is incorrect. Therefore, spell out step-by-step calculations, and explain your answers to open questions.

1. (a) Consider the set \mathcal{B} of three vectors

$$\mathcal{B} = \left\{ \begin{pmatrix} 4\\6\\9 \end{pmatrix}, \begin{pmatrix} 3\\5\\7 \end{pmatrix}, \begin{pmatrix} 0\\2\\3 \end{pmatrix} \right\}$$

Verify that \mathcal{B} is a *basis* for \mathbb{R}^3 , and explain how you got your answer!

(b) If
$$\mathbf{x} = \begin{pmatrix} 9\\11\\19 \end{pmatrix}$$
 is a column vector in \mathbb{R}^3 , then what are its \mathcal{B} -coordinates $[\mathbf{x}]_{\mathcal{B}}$?

2. Calculate the determinant of the matrix A,

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 2 & 3 & 4 & 5 \\ 3 & 3 & 3 & 4 & 5 \\ 4 & 4 & 4 & 4 & 5 \\ 5 & 5 & 5 & 5 & 5 \end{pmatrix}$$

- 3. Let S be the tetrahedron in \mathbb{R}^3 with vertices at the vectors $\mathbf{0}$, \mathbf{e}_1 , \mathbf{e}_2 , \mathbf{e}_3 , and let S' be the tetrahedron with vertices at the vectors $\mathbf{0} = (0, 0, 0)$, $\mathbf{v}_1 = (3, 1, 1)$, $\mathbf{v}_2 = (1, 3, 1)$, $\mathbf{v}_3 = (1, 1, 3)$. See the picture for Exercise 32 in section 3.3 (p. 185).
 - (a) What is the standard matrix A of the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ that maps S onto S'?
 - (b) The volume of the tetrahedron S is $\frac{1}{6}$. What is the volume of the tetrahedron S'?