Math 22 Fall 2013

Problem set 6: Due on Wed Nov 6

Show all your calculations. You can receive partial credit for partially correct work, even if the final solution is incorrect. Therefore, spell out step-by-step calculations, and explain your answers to open questions.

1. Show that if A is diagonalizable, and B is similar to A, then B is also diagonalizable.
2. Find the \mathcal{B}-matrix $[T]_{\mathcal{B}}$ for the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ whose standard matrix is the matrix A below, where $\mathcal{B}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$.

$$
A=\left(\begin{array}{cc}
-6 & -2 \\
4 & 0
\end{array}\right), \mathbf{v}_{1}=\binom{0}{1}, \quad \mathbf{v}_{2}=\binom{-1}{2}
$$

3. Let $L=\operatorname{Span}\left\{\mathbf{b}_{1}\right\}$ be a line in \mathbb{R}^{3}, and $W=\operatorname{Span}\left\{\mathbf{b}_{2}, \mathbf{b}_{3}\right\}$ a plane.

$$
\mathbf{b}_{1}=\left(\begin{array}{c}
3 \\
-3 \\
0
\end{array}\right), \quad \mathbf{b}_{2}=\left(\begin{array}{c}
2 \\
2 \\
-1
\end{array}\right), \mathbf{b}_{3}=\left(\begin{array}{l}
1 \\
1 \\
4
\end{array}\right)
$$

(a) Show that the line L is orthogonal to the plane W.
(b) What is the closest point in the plane W to the vector $\mathbf{v}=\left(\begin{array}{c}5 \\ -3 \\ 1\end{array}\right)$?
(c) What is the closest point on the line L to the same vector \mathbf{v} ?
(d) Find the orthogonal decomposition $\mathbf{v}=\hat{\mathbf{v}}+\mathbf{z}$, where $\hat{\mathbf{v}}$ is a vector in W and \mathbf{z} is a vector that is perpendicular to W.

