Your name:
Instructor (please circle): Samantha Allen Angelica Babei
Math 22 Fall 2018 Homework 2, due Fri Sept 28 4:00 pm in homework boxes in front of Kemeny 108 Please show your work, and check your answers. No credit is given for solutions without work or justification.
(1) Consider the homogeneous system of equations

$$
\begin{array}{r}
x_{1}+3 x_{2}-5 x_{3}=0 \\
x_{1}+4 x_{2}-8 x_{3}=0 \\
-3 x_{1}-7 x_{2}+9 x_{3}=0 .
\end{array}
$$

(a) Write a vector equation that is equivalent to the given system.
(b) Does the system have a nontrivial solution? Justify your answer.
(2) True or false (no working needed, just circle the answer):

If $A \mathbf{x}=\mathbf{0}$ has infinitely many solutions then $A \mathbf{x}=\mathbf{b}$ cannot
(a) T / F : have a unique solution, no matter what choice you make for b.
(b) T / F : If 3 vectors in \mathbb{R}^{3} lie in the same plane then they are linearly dependent.
(c) T / F : If a set of vectors in \mathbb{R}^{4} is linearly independent, then there are at least 4 vectors in the set.
(d) T / F : The equation $A \mathbf{x}=\mathbf{b}$ is homogeneous if the zero vector is a solution.

If $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$, and \mathbf{v}_{4} are in \mathbb{R}^{4} and \mathbf{v}_{3} is not a linear com-
(e) T/F: bination of $\mathbf{v}_{1}, \mathbf{v}_{2}$, and \mathbf{v}_{4}, then $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}\right\}$ is linearly independent.
(3) Consider the following vectors

$$
\mathbf{u}=\left[\begin{array}{r}
2 \\
-4 \\
1
\end{array}\right], \mathbf{v}=\left[\begin{array}{r}
-6 \\
7 \\
-3
\end{array}\right], \mathbf{w}=\left[\begin{array}{l}
8 \\
h \\
4
\end{array}\right]
$$

(a) Are \mathbf{u} and \mathbf{v} linearly independent? If not, give the dependence relation. (b) For which value(s) of h are the vectors \mathbf{u}, \mathbf{v}, and \mathbf{w} linearly dependent?

