Your name:
Instructor (please circle): Samantha Allen Angelica Babei
Math 22 Fall 2018 Homework 6, due Fri Oct $264: 00$ pm in homework boxes in front of Kemeny 108 Please show your work, and check your answers. No credit is given for solutions without work or justification.
(1) Consider the matrix $A=\left[\begin{array}{cccc}2 & -4 & 8 & 2 \\ -1 & 3 & -3 & 0 \\ 1 & -1 & 5 & 2\end{array}\right]$.
(a) Find a basis for $\operatorname{Row} A$.
(b) Find the rank of A and the dimension of $\operatorname{Nul} A$.
(2) True or false (no working needed, just circle the answer):
(a) T / F : A coordinate mapping is both one-to-one and onto.
(b) $\mathrm{T} / \mathrm{F}: \quad$ If $\operatorname{dim} V=10$, then there exists a spanning set of 11 vectors in V.
(c) T / F :

If the null space of a 5×6 matrix A is 4 -dimensional, the dimension of the column space of A is 1 .
(d) T / F : If the rank of a matrix A is equal to the number of columns of A, then A is an invertible matrix.
(e) T / F : \quad If V is an n-dimensional vector space and S is a subset of V consisting of n vectors, then S is a basis for V.
(3) The set $B=\left\{1-t^{2}, t-t^{2}, 2-2 t+t^{2}\right\}$ is a basis for \mathbb{P}_{2}, the vector space of polynomials of degree at most 2 .
(a) Find the change-of-coordinates matrix from B to the standard basis $C=\left\{1, t, t^{2}\right\}$ for \mathbb{P}_{2}.
(b) Find the coordinate vector of $\mathbf{p}(t)=3+t-6 t^{2}$ relative to B.

