Your name:
Instructor (please circle): Samantha Allen Angelica Babei
Math 22 Fall 2018 Homework 3, due Fri Oct 5 4:00 pm in homework boxes in front of Kemeny 108 Please show your work, and check your answers. No credit is given for solutions without work or justification.
(1) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ be the function given by the formula

$$
T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+2 x_{2}-x_{3}, 3 x_{1}+6 x_{2}, x_{1}+2 x_{2}, x_{2}+4 x_{3}\right)
$$

(a) $T$ is a linear transformation. What is the standard matrix $A$ of $T$ ?
(b) Is the transformation $T$ one-to-one? Justify your answer.
(c) Is the transformation $T$ onto? Justify your answer.
(2) True or false (no working needed, just circle the answer):
(a) $\mathrm{T} / \mathrm{F}$ : Every matrix transformation is a linear transformation.

The function $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ given by the formula
(b) $\mathrm{T} / \mathrm{F}$ :

$$
T\left(x_{1}, x_{2}\right)=\left(x_{1}-x_{2}, 5 x_{1}+2 x_{2}, x_{2}-5\right)
$$

is a linear transformation.

If $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is the linear transformation corresponding to counter-clockwise rotation of $3 \pi / 4\left(\right.$ or $\left.135^{\circ}\right)$, then $T(\mathbf{x})=A \mathbf{x}$ where
(c) $\mathrm{T} / \mathrm{F}$ :

$$
A=\left[\begin{array}{rr}
-\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2}
\end{array}\right] .
$$

(d) $\mathrm{T} / \mathrm{F}: \quad$ A linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ is never onto.
(e) $\mathrm{T} / \mathrm{F}: \quad$ For any $3 \times 3$ matrices $A$ and $B, A B=B A$.
(3) Let $A, B, C$ be the following matrices:

$$
A=\left[\begin{array}{rr}
2 & 3 \\
-1 & 1 \\
0 & 5
\end{array}\right], \quad B=\left[\begin{array}{ll}
4 & 1 \\
0 & 3
\end{array}\right], \quad C=\left[\begin{array}{rr}
2 & -1 \\
-2 & 0
\end{array}\right]
$$

(a) Calculate $A B, A C$, and $A B+A C$.
(b) Calculate $B+C$ and then multiply $A$ and $B+C$ to get $A(B+C)$.

