Your name:
Instructor (please circle): Samantha Allen Angelica Babei
Math 22 Fall 2018 Homework 5, due Fri Oct 19 4:00 pm in homework boxes in front of Kemeny 108 Please show your work, and check your answers. No credit is given for solutions without work or justification.
(1) In this exercise, let $W \subset \mathbb{R}^{3}$ be the set of all vectors of the form shown, where a, b, c represent arbitrary real numbers. In each case, determine if W is a subspace of \mathbb{R}^{3}. If yes, find a set S of vectors that spans W. If not, find a property of subspaces that W does not satisfy, and show why W does not satisfy it.
(a) $\left[\begin{array}{l}a-b \\ b+2 \\ -2 a\end{array}\right]$
(b) $\left[\begin{array}{c}a-b \\ 3 b-2 c \\ 2 a+3 c\end{array}\right]$
(2) True or false (no working needed, just circle the answer):
(a) T $/ \mathrm{F}$: \quad The set $M_{2 \times 3}$ of 2×3 matrices with real entries is a vector space.
(b) $\mathrm{T} / \mathrm{F}: \quad \mathbb{R}^{2}$ is a subspace of \mathbb{R}^{3}.
(c) $\mathrm{T} / \mathrm{F}: \quad$ If A is invertible, its columns form a basis for $\operatorname{Col} A$.
(d) $\mathrm{T} / \mathrm{F}: \quad$ If A is invertible, $\operatorname{Nul} A=\{\mathbf{0}\}$.
(e) T / F: Any nonempty subset of a basis is linearly independent.
(3) Consider the matrix

$$
B=\left[\begin{array}{rrrrr}
2 & 4 & 2 & 13 & 2 \\
1 & 2 & 0 & 4 & -2 \\
2 & 4 & -1 & 8 & -2 \\
1 & 2 & -1 & 3 & -2
\end{array}\right]
$$

(a) Compute a basis for $\operatorname{Nul} B$, which is a subspace of \mathbb{R}^{5}.
(b) Compute a basis for $\operatorname{Col} B$, which is a subspace of \mathbb{R}^{4}.

