Your name:

Instructor (please circle):

Samantha Allen

Angelica Babei

Math 22 Fall 2018 Homework 5, due Fri Oct 19 4:00 pm in homework boxes in front of Kemeny 108 Please show your work, and check your answers. No credit is given for solutions without work or justification.

- (1) In this exercise, let $W \subset \mathbb{R}^3$ be the set of all vectors of the form shown, where a, b, c represent arbitrary real numbers. In each case, determine if W is a subspace of \mathbb{R}^3 . If yes, find a set S of vectors that spans W. If not, find a property of subspaces that W does not satisfy, and show why W does not satisfy it.
 - (a) $\begin{bmatrix} a-b\\b+2\\-2a \end{bmatrix}$

(b)
$$\begin{bmatrix} a-b\\3b-2c\\2a+3c \end{bmatrix}$$

- (2) True or false (no working needed, just circle the answer):
 - (a) T / F: The set $M_{2\times 3}$ of 2×3 matrices with real entries is a vector space.
 - (b) T / F: \mathbb{R}^2 is a subspace of \mathbb{R}^3 .
 - (c) T / F: If A is invertible, its columns form a basis for ColA.
 - (d) T / F: If A is invertible, $NulA = \{0\}$.
 - (e) T / F: Any nonempty subset of a basis is linearly independent.

(3) Consider the matrix

$$B = \left[\begin{array}{ccccc} 2 & 4 & 2 & 13 & 2 \\ 1 & 2 & 0 & 4 & -2 \\ 2 & 4 & -1 & 8 & -2 \\ 1 & 2 & -1 & 3 & -2 \end{array} \right].$$

(a) Compute a basis for NulB, which is a subspace of \mathbb{R}^5 .

(b) Compute a basis for ColB, which is a subspace of \mathbb{R}^4 .