Your name:

Instructor (please circle):

Samantha Allen

Angelica Babei

Math 22 Fall 2018 Homework 8, due Fri Nov 9 4:00 pm in homework boxes in front of Kemeny 108 Please show your work, and check your answers. No credit is given for solutions without work or justification.

(1) Let
$$\mathbf{v}_1 = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}$$
 and $\mathbf{v}_2 = \begin{bmatrix} 2 \\ 4 \\ -3 \end{bmatrix}$. Note that \mathbf{v}_1 and \mathbf{v}_2 are orthogonal.

- (a) Find a vector \mathbf{v}_3 such that the set $B = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3}$ is an orthogonal set.
- (b) Normalize each vector in B to find an orthonormal basis B' for \mathbb{R}^3 .

(c) Write $\mathbf{y} = \begin{bmatrix} 0 \\ -3 \\ 2 \end{bmatrix}$ as a linear combination of the vectors in B'.

(d) Find the distance from \mathbf{y} to the subspace W of \mathbb{R}^3 spanned by \mathbf{v}_1 and \mathbf{v}_2 .

- (2) True or false (no working needed, just circle the answer):
 - (a) T / F: If A is a 6×5 matrix such that $\dim \operatorname{Col} A = 3$, then $\dim ((\operatorname{Row} A)^{\perp}) = 2$.
 - (b) T / F: If $S = \{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ is an orthogonal set of vectors in \mathbb{R}^n , then S is a basis for \mathbb{R}^n .
 - (c) T / F: If U is a square matrix with orthonormal columns, then U is invertible.
 - (d) T / F: For any subspace W of \mathbb{R}^n , the only element which is in both W and W^{\perp} is the zero vector.
 - (e) T / F: If two vectors \mathbf{u} and \mathbf{v} are orthogal, then $||\mathbf{u} + \mathbf{v}|| < ||\mathbf{u}|| + ||\mathbf{v}||$.

- (3) Consider the Markov chain given by transition matrix $P = \begin{bmatrix} 0 & 0.2 \\ 1 & 0.8 \end{bmatrix}$ and initial vector $\mathbf{x}_0 = \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix}$.
 - (a) Show that P is a regular matrix.

(b) Find \mathbf{x}_2 .

(c) Find the steady-state vector \mathbf{q} for P.