Your name:
Instructor (please circle): Samantha Allen Angelica Babei
Math 22 Fall 2018 Homework 8, due Fri Nov 9 4:00 pm in homework boxes in front of Kemeny 108 Please show your work, and check your answers. No credit is given for solutions without work or justification.
(1) Let $\mathbf{v}_{1}=\left[\begin{array}{c}2 \\ -1 \\ 0\end{array}\right]$ and $\mathbf{v}_{2}=\left[\begin{array}{c}2 \\ 4 \\ -3\end{array}\right]$. Note that \mathbf{v}_{1} and \mathbf{v}_{2} are orthogonal.
(a) Find a vector \mathbf{v}_{3} such that the set $B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is an orthogonal set.
(b) Normalize each vector in B to find an orthonormal basis B^{\prime} for \mathbb{R}^{3}.
(c) Write $\mathbf{y}=\left[\begin{array}{c}0 \\ -3 \\ 2\end{array}\right]$ as a linear combination of the vectors in B^{\prime}.
(d) Find the distance from \mathbf{y} to the subspace W of \mathbb{R}^{3} spanned by \mathbf{v}_{1} and \mathbf{v}_{2}.
(2) True or false (no working needed, just circle the answer):
$\begin{array}{ll}\text { (a) } \mathrm{T} / \mathrm{F}: & \text { If } A \text { is a } 6 \times 5 \text { matrix such that } \operatorname{dim} \operatorname{Col} A=3 \text {, then } \\ \operatorname{dim}\left((\operatorname{Row} A)^{\perp}\right)=2 .\end{array}$
(b) $\mathrm{T} / \mathrm{F}: \quad$ If $S=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right\}$ is an orthogonal set of vectors in \mathbb{R}^{n}, then S is a basis for \mathbb{R}^{n}.
(c) T / F : If U is a square matrix with orthonormal columns, then U is invertible.
(d) T / F: For any subspace W of \mathbb{R}^{n}, the only element which is in both W and W^{\perp} is the zero vector.
(e) T/F: $\begin{array}{ll}\text { If two vectors } \mathbf{u} \\ \|\mathbf{u}+\mathbf{v}\|<\|\mathbf{u}\|+\|\mathbf{v}\| \text {. and } \mathbf{v} \text { are orthgonal, then }\end{array}$
(3) Consider the Markov chain given by transition matrix $P=\left[\begin{array}{ll}0 & 0.2 \\ 1 & 0.8\end{array}\right]$ and initial vector $\mathbf{x}_{0}=\left[\begin{array}{l}0.5 \\ 0.5\end{array}\right]$.
(a) Show that P is a regular matrix.
(b) Find \mathbf{x}_{2}.
(c) Find the steady-state vector \mathbf{q} for P.

