Your name:
Instructor (please circle): Samantha Allen Angelica Babei
Math 22 Fall 2018 Homework 3, due Fri Oct 5 4:00 pm in homework boxes in front of Kemeny 108 Please show your work, and check your answers. No credit is given for solutions without work or justification.
(1) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ be the function given by the formula

$$
T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+2 x_{2}-x_{3}, 3 x_{1}+6 x_{2}, x_{1}+2 x_{2}, x_{2}+4 x_{3}\right)
$$

(a) T is a linear transformation. What is the standard matrix A of T ?

Solution.

$$
T\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
3 \\
1 \\
0
\end{array}\right] T\left(\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
2 \\
6 \\
2 \\
1
\end{array}\right] \quad T\left(\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
-1 \\
0 \\
0 \\
4
\end{array}\right] \quad \text { so } A=\left[\begin{array}{rrr}
1 & 2 & -1 \\
3 & 6 & 0 \\
1 & 2 & 0 \\
0 & 1 & 4
\end{array}\right] .
$$

(b) Is the transformation T one-to-one? Justify your answer.

Solution. A transformation T with standard matrix A is one-to-one if and only if its columns are linearly independent (or alternatively, if and only if the matrix equation $A \mathbf{x}=\mathbf{0}$ only has the trivial solution). This happens when the REF of A has a pivot in every column. To find out if this is the case, we row-reduce A to REF:

$$
\left[\begin{array}{rrr}
1 & 2 & -1 \\
3 & 6 & 0 \\
1 & 2 & 0 \\
0 & 1 & 4
\end{array}\right] \xrightarrow{R_{3} \leftarrow R_{3}-R_{1}} \xrightarrow{R_{2} \leftarrow R_{2}-3 R_{1}}\left[\begin{array}{rrr}
1 & 2 & -1 \\
0 & 0 & 3 \\
0 & 0 & 1 \\
0 & 1 & 4
\end{array}\right] \xrightarrow{R_{4} \leftrightarrow R_{2}}\left[\begin{array}{rrr}
1 & 2 & -1 \\
0 & 1 & 4 \\
0 & 0 & 1 \\
0 & 0 & 3
\end{array}\right] \xrightarrow{R_{4} \rightarrow R_{4}-3 R_{3}}\left[\begin{array}{rrr}
1 & 2 & -1 \\
0 & 1 & 4 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore, T is indeed one-to-one.
(c) Is the transformation T onto? Justify your answer.

Solution. T is onto if and only if the columns of its standard matrix A span the codomain, which happens if and only if A has a pivot in each row. Since A has more rows than columns, we see that this is not the case, and T is not onto.
(2) True or false (no working needed, just circle the answer):
(a) T : Every matrix transformation is a linear transformation.

The function $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ given by the formula
(b) F:

$$
T\left(x_{1}, x_{2}\right)=\left(x_{1}-x_{2}, 5 x_{1}+2 x_{2}, x_{2}-5\right)
$$

is a linear transformation.

If $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is the linear transformation corresponding to counter-clockwise rotation of $3 \pi / 4$ (or 135°), then $T(\mathbf{x})=A \mathbf{x}$
(c) T :

$$
A=\left[\begin{array}{rr}
-\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2}
\end{array}\right] .
$$

(d) $\mathrm{T}: \quad$ A linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ is never onto.
(e) F: \quad For any 3×3 matrices A and $B, A B=B A$.
(3) Let A, B, C be the following matrices:

$$
A=\left[\begin{array}{rr}
2 & 3 \\
-1 & 1 \\
0 & 5
\end{array}\right], \quad B=\left[\begin{array}{ll}
4 & 1 \\
0 & 3
\end{array}\right], \quad C=\left[\begin{array}{rr}
2 & -1 \\
-2 & 0
\end{array}\right]
$$

(a) Calculate $A B, A C$, and $A B+A C$.

Solution.

$$
A B=\left[\begin{array}{rr}
8 & 11 \\
-4 & 2 \\
0 & 15
\end{array}\right], \quad A C=\left[\begin{array}{rr}
-2 & -2 \\
-4 & 1 \\
-10 & 0
\end{array}\right], \quad A B+A C=\left[\begin{array}{rr}
6 & 9 \\
-8 & 3 \\
-10 & 15
\end{array}\right]
$$

(b) Calculate $B+C$ and then multiply A and $B+C$ to get $A(B+C)$.

$$
B+C=\left[\begin{array}{rr}
6 & 0 \\
-2 & 3
\end{array}\right], \quad A(B+C)=\left[\begin{array}{rr}
6 & 9 \\
-8 & 3 \\
-10 & 15
\end{array}\right]
$$

