Your name:
Instructor (please circle): Samantha Allen Angelica Babei
Math 22 Fall 2018 Homework 5, due Fri Oct 19 4:00 pm in homework boxes in front of Kemeny 108 Please show your work, and check your answers. No credit is given for solutions without work or justification.
(1) In this exercise, let $W \subset \mathbb{R}^{3}$ be the set of all vectors of the form shown, where a, b, c represent arbitrary real numbers. In each case, determine if W is a subspace of \mathbb{R}^{3}. If yes, find a set S of vectors that spans W. If not, find a property of subspaces that W does not satisfy, and show why W does not satisfy it.
(a) $\left[\begin{array}{l}a-b \\ b+2 \\ -2 a\end{array}\right]$

Solution. W is not a subspace, since it doesn't contain $\mathbf{0}$: the system

$$
\left[\begin{array}{c}
a-b \\
b+2 \\
-2 a
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

is not consistent. If the first and third rows are zero, then $a=b=0$, in which case $\left[\begin{array}{l}a-b \\ b+2 \\ -2 a\end{array}\right]=\left[\begin{array}{l}0 \\ 2 \\ 0\end{array}\right]$
(b) $\left[\begin{array}{c}a-b \\ 3 b-2 c \\ 2 a+3 c\end{array}\right]$

Solution. $\left[\begin{array}{c}a-b \\ 3 b-2 c \\ 2 a+3 c\end{array}\right]=a\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right]+b\left[\begin{array}{c}-1 \\ 3 \\ 0\end{array}\right]+c\left[\begin{array}{c}0 \\ -2 \\ 3\end{array}\right]$ so $W=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right],\left[\begin{array}{c}-1 \\ 3 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ -2 \\ 3\end{array}\right]\right\}$.
W is a subspace, since by Thm 1 in Section 4.1 the span of a set of vectors in a space V is a subspace of V.
(2) True or false (no working needed, just circle the answer):
(a) T : \quad The set $M_{2 \times 3}$ of 2×3 matrices with real entries is a vector space.
(b) F: $\quad \mathbb{R}^{2}$ is a subspace of \mathbb{R}^{3}.
(c) $\mathrm{T}: \quad$ If A is invertible, its columns form a basis for $\operatorname{Col} A$.
(d) T: If A is invertible, $\operatorname{Nul} A=\{\mathbf{0}\}$.
(e) $\mathrm{T}: \quad$ Any nonempty subset of a basis is linearly independent.
(3) Consider the matrix

$$
B=\left[\begin{array}{rrrrr}
2 & 4 & 2 & 13 & 2 \\
1 & 2 & 0 & 4 & -2 \\
2 & 4 & -1 & 8 & -2 \\
1 & 2 & -1 & 3 & -2
\end{array}\right]
$$

(a) Compute a basis for $\operatorname{Nul} B$, which is a subspace of \mathbb{R}^{5}.
$\left[\begin{array}{rrrrr}2 & 4 & 2 & 13 & 2 \\ 1 & 2 & 0 & 4 & -2 \\ 2 & 4 & -1 & 8 & -2 \\ 1 & 2 & -1 & 3 & -2\end{array}\right] \xrightarrow{\substack{R_{1} \leftarrow R_{1}-2 R_{2} \\ R_{3} \leftarrow R_{3}-2 R_{2}}}\left[\begin{array}{rrrrr}0 & 0 & 2 & 5 & 6 \\ 1 & 2 & 0 & 4 & -2 \\ 0 & 0 & -1 & 0 & 2 \\ 1 & 2 & -1 & 3 & -2\end{array}\right] \xrightarrow{R_{2} \leftarrow R_{2}-R_{4}}\left[\begin{array}{rrrrr}0 & 0 & 2 & 5 & 6 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & -1 & 0 & 2 \\ 1 & 2 & -1 & 3 & -2\end{array}\right]$
$\xrightarrow{\substack{R_{1} \leftarrow R_{1}+2 R_{3} \\ R_{2} \leftarrow R_{2}+R_{3}}}\left[\begin{array}{rrrrr}0 & 0 & 0 & 5 & 10 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & -1 & 0 & 2 \\ 1 & 2 & -1 & 3 & -2\end{array}\right] \xrightarrow{\substack{R_{1} \leftarrow R_{1}-5 R_{2} \\ R_{4} \rightarrow R_{4}-R_{3}}}\left[\begin{array}{rrrrr}0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & -1 & 0 & 2 \\ 1 & 2 & 0 & 3 & -4\end{array}\right] \xrightarrow{R_{1} \leftrightarrow R_{4}} \begin{aligned} & R_{3} \leftrightarrow R_{2}\end{aligned}\left[\begin{array}{rrrrr}1 & 2 & 0 & 3 & -4 \\ 0 & 0 & -1 & 0 & 2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$
$\xrightarrow[\longrightarrow]{\substack{R_{2} \leftrightarrow-R_{2} \\ R_{1} \stackrel{R_{1}}{\longrightarrow}}}\left[\begin{array}{llllr}1 & 2 & 0 & 0 & -10 \\ 0 & 0 & 1 & 0 & -2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$
$\operatorname{Nul} A=x_{2}\left[\begin{array}{c}-2 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right]+x_{5}\left[\begin{array}{c}10 \\ 0 \\ 2 \\ -2 \\ 1\end{array}\right]$ and a basis is $\left\{\left[\begin{array}{c}-2 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}10 \\ 0 \\ 2 \\ -2 \\ 1\end{array}\right]\right\}$.
(b) Compute a basis for $\operatorname{Col} B$, which is a subspace of \mathbb{R}^{4}.

Solution. The basis for $\operatorname{Col} A$ is given by the pivot columns in the original matrix,
so our basis is $\left\{\left[\begin{array}{l}2 \\ 1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{c}2 \\ 0 \\ -1 \\ -1\end{array}\right],\left[\begin{array}{c}13 \\ 4 \\ 8 \\ 3\end{array}\right]\right\}$.

