Your name:
Instructor (please circle): Samantha Allen Angelica Babei
Math 22 Fall 2018 Homework 6, due Fri Oct $264: 00$ pm in homework boxes in front of Kemeny 108 Please show your work, and check your answers. No credit is given for solutions without work or justification.
(1) Consider the matrix $A=\left[\begin{array}{cccc}2 & -4 & 8 & 2 \\ -1 & 3 & -3 & 0 \\ 1 & -1 & 5 & 2\end{array}\right]$.
(a) Find a basis for $\operatorname{Row} A$.

$$
\left[\begin{array}{cccc}
2 & -4 & 8 & 2 \\
-1 & 3 & -3 & 0 \\
1 & -1 & 5 & 2
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & -2 & 4 & 1 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & -2 & 4 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Basis $B=\left\{\left[\begin{array}{c}1 \\ -2 \\ 4 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 1\end{array}\right]\right\}$
(b) Find the rank of A and the dimension of $\operatorname{Nul} A$. rank $A=2$
$\operatorname{dim} \operatorname{Nul} A=3-\operatorname{rank} A=3-2=1$.
(2) True or false (no working needed, just circle the answer):
(a) $\mathrm{T}: \quad \mathrm{A}$ coordinate mapping is both one-to-one and onto.
(b) $\mathrm{T}: \quad$ If $\operatorname{dim} V=10$, then there exists a spanning set of 11 vectors in V.
(c) F: If the null space of a 5×6 matrix A is 4 -dimensional, the dimension of the column space of A is 1 .
(d) F: If the rank of a matrix A is equal to the number of columns of A, then A is an invertible matrix.
(e) F: \quad If V is an n-dimensional vector space and S is a subset of V consisting of n vectors, then S is a basis for V.
(3) The set $B=\left\{1-t^{2}, t-t^{2}, 2-2 t+t^{2}\right\}$ is a basis for \mathbb{P}_{2}, the vector space of polynomials of degree at most 2 .
(a) Find the change-of-coordinates matrix from B to the standard basis $C=\left\{1, t, t^{2}\right\}$ for \mathbb{P}_{2}.

$$
\underset{C \leftarrow B}{P}=\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & -2 \\
-1 & -1 & 1
\end{array}\right]
$$

Check:

$$
\begin{gathered}
\underset{C \leftarrow B}{P}=\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & -2 \\
-1 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{c}
a+2 c \\
b-2 c \\
-a-b+c
\end{array}\right] \\
a\left(1-t^{2}\right)+b\left(t-t^{2}\right)+c\left(2-2 t+t^{2}\right)=(a+2 c) 1+(b-2 c) t+(-a-b+c) t^{2}
\end{gathered}
$$

(b) Find the coordinate vector of $\mathbf{p}(t)=3+t-6 t^{2}$ relative to B. Need to solve:

$$
\begin{gathered}
a+2 c=3 \\
b-2 c=1 \\
-a-b+c=-6
\end{gathered}
$$

(OR use inverse of above matrix)

$$
[\mathbf{p}]_{B}=\left[\begin{array}{c}
7 \\
-3 \\
-2
\end{array}\right]
$$

