Your name:
Instructor (please circle):
Samantha Allen Angelica Babei
Math 22 Fall 2018 Homework 7, due Fri Nov 2 4:00 pm in homework boxes in front of Kemeny 108 Please show your work, and check your answers. No credit is given for solutions without work or justification.
(1) Consider

$$
A=\left[\begin{array}{rrr}
2 & -2 & 1 \\
-1 & 3 & -1 \\
2 & -4 & 3
\end{array}\right]
$$

(a) What is the characteristic polynomial of A ? Find all of the eigenvalues for A, and state their algebraic multiplicities.

Solution.

$$
\begin{gathered}
\operatorname{det}\left(A-\lambda I_{3}\right)=(2-\lambda) \operatorname{det}\left[\begin{array}{cc}
3-\lambda & -1 \\
-4 & 3-\lambda
\end{array}\right]+2 \operatorname{det}\left[\begin{array}{cc}
-1 & -1 \\
2 & 3-\lambda
\end{array}\right]+\operatorname{det}\left[\begin{array}{cc}
-1 & 3-\lambda \\
2 & -4
\end{array}\right] \\
=(2-\lambda)(3-\lambda)(3-\lambda)-4(2-\lambda)+2(-(3-\lambda)+2)+4-2(3-\lambda)=-\lambda^{3}+8 \lambda^{2}-13 \lambda+6
\end{gathered}
$$

We want to solve $\lambda^{3}-8 \lambda^{2}+13 \lambda-6=0$. The integer roots of a polynomial with integer entries are factors of its constant coefficient. In this case, we need to check $\pm 1, \pm 2, \pm 3, \pm 6$. We see that $\lambda=1$ is a root. Using long division, we get that $\lambda^{3}-8 \lambda^{2}+13 \lambda-6=(\lambda-1)\left(\lambda^{2}-7 \lambda+6\right)=(\lambda-1)(\lambda-1)(\lambda-6)$, so we have eigenvalues $\lambda=1$ with algebraic multiplicity 2 , and $\lambda=6$ with algebraic multiplicity 1 .
(b) For each of the eigenvalues found in part (a), find the dimensions of their respective eigenspaces.

Solution. $\lambda=1$, then

$$
\left[\begin{array}{rrr}
1 & -2 & 1 \\
-1 & 2 & -1 \\
2 & -4 & 2
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
1 & -2 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

so the eigenspace for $\lambda=1$ has dimension 2 , as there are two free variables.
$\lambda=6$, then

$$
\left[\begin{array}{rrr}
-4 & -2 & 1 \\
-1 & -3 & -1 \\
2 & -4 & -3
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & 3 & 1 \\
0 & 2 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

so the eigenspace for $\lambda=6$ has dimension 1 , as there is one free variables.
(2) True or false (no working needed, just circle the answer):
(a) F: \quad An $n \times n$ matrix A is invertible if and only if $\lambda=0$ is an eigenvalue.
(b) T: If \mathbf{x} is an eigenvector for A, so is $3 \mathbf{x}$.
(c) F: Every matrix is similar to a diagonal matrix.

If \mathbf{u} and \mathbf{v} are eigenvectors for A in the same eigenspace,
(d) T : then any nonzero linear combination of \mathbf{u} and \mathbf{v} is also an eigenvector.

A matrix is diagonalizable if and only if the algebraic mul(e) F: tiplicity of each eigenvalue is equal to the dimension of its eigenspace.
(3) Consider

$$
B=\left[\begin{array}{rr}
17 & -6 \\
45 & -16
\end{array}\right]
$$

Find B^{11}. Explain all the intermediary steps, but no need to simplify the end result (for example, you may leave unsimplified entries in the matrices such as $8 \cdot 3^{12}-4$).

Solution. We diagonalize. First we find the eigenvalues:

$$
(17-\lambda)(-16-\lambda)+270=\lambda^{2}-\lambda-2=(\lambda+1)(\lambda-2) .
$$

Since the charpoly factors completely into distinct linear factors, the matrix is diagonalizable.
$\lambda=-1$ gives

$$
\left[\begin{array}{cc}
18 & -6 \\
45 & -15
\end{array}\right] \rightarrow\left[\begin{array}{cc}
3 & -1 \\
0 & 0
\end{array}\right]
$$

so the eigenvector basis for the eigenspace for $\lambda=-1$ is $\left[\begin{array}{l}1 \\ 3\end{array}\right]$.
$\lambda=2$ gives

$$
\left[\begin{array}{cc}
15 & -6 \\
45 & -18
\end{array}\right] \rightarrow\left[\begin{array}{cc}
5 & -2 \\
0 & 0
\end{array}\right]
$$

so the eigenvector basis for the eigenspace for $\lambda=2$ is $\left[\begin{array}{l}2 \\ 5\end{array}\right]$.
Therefore, $B=P D P^{-1}$ for $P=\left[\begin{array}{ll}1 & 2 \\ 3 & 5\end{array}\right], D=\left[\begin{array}{cc}-1 & 0 \\ 0 & 2\end{array}\right]$, and $P^{-1}=\left[\begin{array}{cc}-5 & 2 \\ 3 & -1\end{array}\right]$.
Then

$$
B^{11}=P D^{11} P^{-1}=\left[\begin{array}{ll}
1 & 2 \\
3 & 5
\end{array}\right]\left[\begin{array}{cc}
-1 & 0 \\
0 & 2048
\end{array}\right]\left[\begin{array}{cc}
-5 & 2 \\
3 & -1
\end{array}\right] .
$$

