Your name:
Instructor (please circle):
Samantha Allen Angelica Babei
Math 22 Fall 2018 Homework 8, due Fri Nov 9 4:00 pm in homework boxes in front of Kemeny 108 Please show your work, and check your answers. No credit is given for solutions without work or justification.
(1) Let $\mathbf{v}_{1}=\left[\begin{array}{c}2 \\ -1 \\ 0\end{array}\right]$ and $\mathbf{v}_{2}=\left[\begin{array}{c}2 \\ 4 \\ -3\end{array}\right]$. Note that \mathbf{v}_{1} and \mathbf{v}_{2} are orthogonal.
(a) Find a vector \mathbf{v}_{3} such that the set $B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is an orthogonal set.

Need $\mathbf{v}_{3}=\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ such that $\mathbf{v}_{3} \cdot \mathbf{v}_{1}=0$ and $\mathbf{v}_{3} \cdot \mathbf{v}_{2}=0$. So solve

$$
\begin{gathered}
2 a-b=0 \\
2 a+4 b-3 c=0 .
\end{gathered}
$$

One correct answer would be

$$
\mathbf{v}_{3}=\left[\begin{array}{c}
1 \\
2 \\
10 / 3
\end{array}\right]
$$

(b) Normalize each vector in B to find an orthonormal basis B^{\prime} for \mathbb{R}^{3}.

$$
\begin{gathered}
\left\|\mathbf{v}_{1}\right\|=\sqrt{5},\left\|\mathbf{v}_{2}\right\|=\sqrt{29},\left\|\mathbf{v}_{3}\right\|=\sqrt{145} / 3 \\
B^{\prime}=\left\{\left[\begin{array}{c}
2 / \sqrt{5} \\
-1 / \sqrt{5} \\
0
\end{array}\right],\left[\begin{array}{c}
2 / \sqrt{29} \\
4 / \sqrt{29} \\
-3 / \sqrt{29}
\end{array}\right],\left[\begin{array}{c}
3 / \sqrt{145} \\
6 / \sqrt{145} \\
10 / \sqrt{145}
\end{array}\right]\right\}
\end{gathered}
$$

(c) Write $\mathbf{y}=\left[\begin{array}{c}0 \\ -3 \\ 2\end{array}\right]$ as a linear combination of the vectors in B^{\prime}.

Say $B^{\prime}=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$. Then

$$
\begin{aligned}
\mathbf{y} & =\left[\begin{array}{c}
0 \\
-3 \\
2
\end{array}\right]=\left(\mathbf{y} \cdot \mathbf{u}_{1}\right) \mathbf{u}_{1}+\left(\mathbf{y} \cdot \mathbf{u}_{2}\right) \mathbf{u}_{2}+\left(\mathbf{y} \cdot \mathbf{u}_{3}\right) \mathbf{u}_{3} \\
& =(3 / \sqrt{5}) \mathbf{u}_{1}-(18 / \sqrt{29}) \mathbf{u}_{2}+(2 / \sqrt{145}) \mathbf{u}_{3}
\end{aligned}
$$

(d) Find the distance from \mathbf{y} to the subspace W of \mathbb{R}^{3} spanned by \mathbf{v}_{1} and \mathbf{v}_{2}.

$$
\begin{gathered}
d=\left\|\mathbf{y}-\operatorname{proj}_{\mathbf{W}} \mathbf{y}\right\|=\left\|\mathbf{y}-\left((3 / \sqrt{5}) \mathbf{u}_{1}-(18 / \sqrt{29}) \mathbf{u}_{2}\right)\right\| \\
=\left\|(2 / \sqrt{145}) \mathbf{u}_{3}\right\|=2 / \sqrt{145} .
\end{gathered}
$$

(2) True or false (no working needed, just circle the answer):
(a) $\mathrm{T}: \quad$ If A is a 6×5 matrix such that $\operatorname{dim} \operatorname{Col} A=3$, then $\operatorname{dim}\left((\operatorname{Row} A)^{\perp}\right)=2$.
(b) F: If $S=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right\}$ is an orthogonal set of vectors in \mathbb{R}^{n}, then S is a basis for \mathbb{R}^{n}.
(c) $\mathrm{T}: \quad$ If U is a square matrix with orthonormal columns, then U is invertible.
(d) T : For any subspace W of \mathbb{R}^{n}, the only element which is in both W and W^{\perp} is the zero vector.
(e) F: \quad If two vectors \mathbf{u} and \mathbf{v} are orthgonal, then
(3) Consider the Markov chain given by transition matrix $P=\left[\begin{array}{ll}0 & 0.2 \\ 1 & 0.8\end{array}\right]$ and initial vector $\mathbf{x}_{0}=\left[\begin{array}{l}0.5 \\ 0.5\end{array}\right]$.
(a) Show that P is a regular matrix.

First, note that the columns of P are probability vectors: all of the entries are nonnegative, and the columns add to one.
Second, we have that $P^{2}=\left[\begin{array}{ll}0 & 0.2 \\ 1 & 0.8\end{array}\right]\left[\begin{array}{cc}0 & 0.2 \\ 1 & 0.8\end{array}\right]=\left[\begin{array}{ll}0.2 & 0.16 \\ 0.8 & 0.84\end{array}\right]$. Since P^{2} has nonzero entries, P is a regular matrix.
(b) Find x_{2}.

$$
\mathbf{x}_{2}=P^{2} \mathbf{x}_{0}=\left[\begin{array}{ll}
0.2 & 0.16 \\
0.8 & 0.84
\end{array}\right]\left[\begin{array}{c}
0.5 \\
0.5
\end{array}\right]=\left[\begin{array}{c}
0.18 \\
0.82
\end{array}\right]
$$

(c) Find the steady-state vector \mathbf{q} for P.

We need to find \mathbf{q} such that $P \mathbf{q}=\mathbf{q}$ and \mathbf{q} is a probability vector.
First, find an eigenvector of P corresponding to the eigenvalue 1 .
So solve $\left(P-1 I_{2}\right) \mathbf{x}=\mathbf{0}$:

$$
\begin{gathered}
{\left[\begin{array}{rr|r}
-1 & 0.2 & 0 \\
1 & -0.2 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rr|r}
-1 & 0.2 & 0 \\
0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rr|r}
1 & -0.2 & 0 \\
0 & 0 & 0
\end{array}\right]} \\
\mathbf{x}
\end{gathered}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=x_{2}\left[\begin{array}{c}
0.2 \\
1
\end{array}\right], ~\left[\begin{array}{rl}
\end{array}\right.
$$

So $\left[\begin{array}{c}0.2 \\ 1\end{array}\right]$ is an eigenvector of P corresponding to the eigenvalue 1 . Note that
$0.2+1=1.2$ and let $\mathbf{q}=\frac{1}{1.2}\left[\begin{array}{c}0.2 \\ 1\end{array}\right]=\left[\begin{array}{c}1 / 6 \\ 5 / 6\end{array}\right]$.

