
Math 22: Linear Algebra
Fall 2019 - Homework 4

Total: 20 points Return date: Wednesday 10/16/19

Numbered problems are taken from Lay, D. et al: Linear Algebra with Applications, fifth edition.
Please show your work; no credit is given for solutions without work or justification.

Part A

1. Let A be an n× n matrix. Complete the proof of Lecture 10, Theorem 5*. Show that:
for each b ∈ Rn the equation Ax = b has a unique solution⇒ A is invertible.
You should argue using the following steps:

a) Show that AC = In for some matrix C. Hint: Use the unit vectors.

Solution: We know that Ax = b has a solution for any b. Therefore this equation has
also solutions for the unit vectors. We collect these solutions:

Ac1 = e1 , Ac2 = e2, . . . , Acn = en.

Then we set C = [c1, c2, . . . , cn], the matrix whose columns are the ci. The above equations
imply for the matrix

[Ac1, Ac2, . . . , Acn] = AC = [e1, e2, . . . , en] = In. So AC = In.

b) Show that for the matrix C from part a) we have: Cx = 0⇒ x = 0.

Solution: We have Cx = 0⇒ AC︸︷︷︸
=In

x = C0 = 0⇒ x = Inx = 0.

c) Explain why for each b ∈ Rn the equation Cx = b has a unique solution.

Solution: Part b) implies that the map Cx is one-to-one. That means that C has a pivot
in every column. As C is a square matrix, it has a pivot in every row. So the map Cx is both
one-to-one and onto. This implies our statement.

d) Show that there is a matrix B, such that CB = In, then show that B = A.

Solution: By part c) we have like for A in part a) that there is a matrix B, such that CB = In.
So AC = In and CB = In. Therefore AC︸︷︷︸

=In

B = AIn, but that means that A = B. So

CA = In.

Part a) and d) together then imply that A is invertible and that C = A−1.
Note: You should not just cite the Invertible Matrix Theorem but instead prove these statements
on your own.
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2. §2.3.12 True / False questions. All matrices are n× n matrices.

a) If there is an n × n matrix such that AD = In, then there is an n × n matrix such that
CA = In.
True This follows from the Invertible Matrix Theorem.

b) If the columns of A are linearly independent, then the columns of A span Rn.
True Again, this follows from the Invertible Matrix Theorem.

c) If the equation Ax = b has at least one solution for each vector b in Rn, then the solution is
unique for each b in Rn.
True This is another consequence of the Invertible Matrix Theorem.

d) If the linear transformation T (x) = Ax maps Rn into Rn, then A has n pivot positions.
False A could be any square n× n matrix and not all of them have n pivot positions.

e) If there is a vector b in Rn, such that the equation Ax = b is inconsistent, then the transfor-
mation x 7→ Ax is not one-to-one.
True If the equation Ax = b is inconsistent then A does not have a pivot in every row. As
A is a square matrix it does not have a pivot in every column. That implies that T is not
one-to-one.

3. §2.3.18 Let C be a 6× 6 matrix such that the equation Cx = v is consistent for every vector v in
R6. Can there be a vector v, such that the equation Cx = v has more than one solution?

Solution: This is not possible. The condition that Cx = v has always a solution implies that
the map x 7→ Cx is onto. As C is a square matrix this means that the map is also one-to-one. This
means that there is always a unique solution x for the equation Cx = v.

Part B

4. §2.3.32 Let A be an n × n matrix such that the equation Ax = 0 has only the trivial solution.
Without using the Invertible Matrix Theorem, explain directly why the equation Ax = b must
have a solution for each b.

Solution: As the equation Ax = 0 has only the trivial solution we know that A has a pivot in
every row. As A is a square matrix, it also has a pivot in every column. But that means that the
map x 7→ Ax is onto. Hence the equation Ax = b must have a solution x for each b.

5. §3.1.8 Compute the determinant using a cofactor expansion across the first row.

Solution: Expanding along the first row we get:∣∣∣∣∣∣
4 1 2
4 0 3
6 1 5

∣∣∣∣∣∣ = 4 ·
∣∣∣∣0 3
1 5

∣∣∣∣+ (−1) ·
∣∣∣∣4 3
6 5

∣∣∣∣+ 2 ·
∣∣∣∣4 0
6 1

∣∣∣∣ = 4 · 6 + (−1) · 11 + 2 · (−8) = −3.
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6. §3.1.10 Compute the determinant using a cofactor expansion. At each step use the most efficient
expansion.

Solution: We start by expanding across the second row, as this row has the most zeros.∣∣∣∣∣∣∣∣
1 −2 5 2
0 0 3 0
2 −4 −3 5
2 0 3 5

∣∣∣∣∣∣∣∣
Row 2
= (−3) ·

∣∣∣∣∣∣
1 −2 2
2 −4 5
2 0 5

∣∣∣∣∣∣ Row 3
= (−3) ·

(
2 ·
∣∣∣∣−2 2
−4 5

∣∣∣∣+ 5 ·
∣∣∣∣1 −2
2 −4

∣∣∣∣)

= (−3) · (2 · (−2) + 5 · 0) = 12.

Part C

7. §3.2.8 Find the determinant by row reduction to echelon form.

Solution: We row reduce the matrix to echelon form U . In each step we record the operation
performed and how it scales the determinant. We then multiply this number with the determinant
of U .

A =


1 3 2 −4
0 1 2 −5
2 7 6 −3
−3 −10 −7 2

 −2R1+R3,3R1+R4→


1 3 2 −4
0 1 2 −5
0 1 2 5
0 −1 −1 −10


−R2+R3,R2+R4→


1 3 2 −4
0 1 2 −5
0 0 0 10
0 0 1 −10

 R3↔R4→


1 3 2 −4
0 1 2 −5
0 0 1 −10
0 0 0 10

 = U.

As U is a diagonal matrix its determinant det(U) = 1 · 1 · 1 · 10 = 10. Adding a row to another
row does not change the determinant. Only the last step in the row reduction, where we swap a
row changes the sign of the determinant. Therefore

det(A) = − det(U) = −10.

8. §3.2.18 Let A be the matrix

A =

a b c
d e f
g h i

 , where det(A) = 7. Find det(B), where B =

d e f
a b c
g h i

 .

Solution: We obtain A from B by swapping row 1 and row 2. Therefore these two matrices differ
only by a factor of −1. We have det(B) = −det(A) = −7.
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9. §3.2.28 True / False questions.

a) If three row interchanges are made in succession, then the new determinant equals the old
determinant.
False If we do three row interchanges in the matrix A to obtain the matrix B, then
det(B) = (−1)3 det(A) = −det(A).

b) The determinant of A is the product of the diagonal entries in A.
False This is not true in general. Counterexample:∣∣∣∣2 3

2 3

∣∣∣∣ = 0 6= 2 · 3 = 6.

c) If det(A) = 0 then two rows or two columns are the same, or a row or a column is zero.
False This is not true in general. Counterexample:∣∣∣∣∣∣

1 0 1
0 1 1
1 1 2

∣∣∣∣∣∣ = 0.

d) det(A)−1 = (−1) det(A).

False det(A)−1 =
1

det(A)
.

Part D

10. §4.1.2 Let W be the union of the first and third quadrants in the xy-plane. That is let

W =

{[
x
y

]
, such that x · y ≥ 0

}
.

a) If u is in W and c is a number, is c · u in W ? Why?
Solution: This is true.

If u =

[
u1
u2

]
, then c · u =

[
c · u1
c · u2

]
and (c · u1)(c · u2) = c2(u1 · u2).

But as by definition of W we have u1 ·u2 ≥ 0, we also have (c ·u1)(c ·u2) = c2(u1 ·u2) ≥ 0.
That means that c · u is also in W .

b) Find vectors u and v, such that u+ v is not in W .

Solution: For u =

[
−1
0

]
and v =

[
0
1

]
we have that u+v =

[
−1
1

]
is not in W . This means

that W can not be a vector space as it does not satisfy the subspace criteria.

11. §4.1.6 Determine whether all polynomials of the form p(t) = a+ t2, where a is in R is a subspace
H of P2, the space of polynomials of degree two.
Solution: H is not a subspace, as q(t) = t2 in H , but

2 · t2 is not in V.
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12. §4.1.8 Determine whether all polynomials in Pn, where p(0) = 0 form a subspace H of Pn.
Solution: H is a subspace. We check the subspace criteria. Let p, q be in H and c in R. Then we
have to show that

i) The zero polynomial O : t→ O(t) = 0 is in H ,as O(0) = 0.

ii) p+ q in H: We check: (p+ q)(0) = p(0) + q(0) = 0 + 0 = 0, so p+ q in H .

iii) c · p in H: We check: (c · p)(0) = c · p(0) = 0, so c · p in H .

13. §4.1.32 Let H and K be subspaces of a vector space V . Show that the intersection H ∩ K is
a subspace of V . Then give a counterexample in R2 that the union H ∪ K is not, in general, a
subspace.
Solution: We first look at H ∩ K. To show that H ∩ K is a subspace we check the subspace
criteria. Let v,w be in H ∩K and c in R. We know that

v ∈ H ∩K ⇔ v ∈ H and v ∈ K.

Then we have to show that

i) The zero vector 0 is in H ∩K: As 0 ∈ H and 0 ∈ K - as both are subspaces - we know that
0 ∈ H ∩K.

ii) v +w in H ∩K: We know that

v ∈ H ∩K ⇒ v ∈ H and w ∈ H ∩K ⇒ w ∈ H.

As v ∈ H and w ∈ H we know - as H is a subspace that v +w ∈ H . Similarly

v ∈ H ∩K ⇒ v ∈ K and w ∈ H ∩K ⇒ w ∈ K.

Hence v +w ∈ K . But that implies that v+w in both subspaces, therefore v+w ∈ H∩K.

iii) c · v in H ∩K: We know that

v ∈ H ∩K ⇒ v ∈ H ⇒ cv ∈ H,

where the last implication follows from the facth that H is a subspace. By the same reasoning
cv ∈ K. But that implies that cv in both subspaces, therefore cv ∈ H ∩K.

As a counterexample take the lines L1 = Span
{[

1
0

]}
and L2 = Span

{[
0
1

]}
. It is easy to check

that these are both subspaces of R2. Consider L1 ∪ L2. We have that[
0
1

]
,

[
1
0

]
∈ L1 ∪ L2 but

[
0
1

]
+

[
1
0

]
=

[
1
1

]
is not in L1 ∪ L2.

Therefore L1 ∪ L2 is not a subspace.


