Math 22: Linear Algebra
Fall 2019 - Homework 4

Total: 20 points Return date: Wednesday 10/16/19

Numbered problems are taken from Lay, D. et al: Linear Algebra with Applications, fifth edition.
Please show your work; no credit is given for solutions without work or justification.

Part A

1. Let A be an n x n matrix. Complete the proof of Lecture 10, Theorem 5*. Show that:
for each b € R™ the equation Ax = b has a unique solution = A is invertible.
You should argue using the following steps:

a) Show that AC' = I, for some matrix C'. Hint: Use the unit vectors.

Solution: We know that Ax = b has a solution for any b. Therefore this equation has
also solutions for the unit vectors. We collect these solutions:

Acy =e1, Aco = eg,..., Ac, = e,.

Then we set C' = [c1, Ca, . . ., €], the matrix whose columns are the c¢;. The above equations
imply for the matrix

[Acy, Acy, ..., Ac,] = AC = [e1,eq,...,e,] =1,. So AC =1I,.
b) Show that for the matrix C' from part a) we have: Cx = 0 = x = 0.

Solution: Wehave Cx=0= ACx=C0=0=x=1,x=0.
=I,
c) Explain why for each b € R” the equation Cx = b has a unique solution.

Solution: Part b) implies that the map Cx is one-to-one. That means that C' has a pivot
in every column. As C' is a square matrix, it has a pivot in every row. So the map Cx is both
one-to-one and onto. This implies our statement.

d) Show that there is a matrix B, such that C B = I,,, then show that B = A.

Solution: By part c) we have like for A in part a) that there is a matrix B, such that CB = I,,.
So AC = I,, and CB = I,. Therefore AC B = AlI,, but that means that A = B. So

=1,
CA=1,.

Part a) and d) together then imply that A is invertible and that C' = A=,
Note: You should not just cite the Invertible Matrix Theorem but instead prove these statements
on your own.
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2. §2.3.12 True / False questions. All matrices are n X n matrices.

a) If there is an n x m matrix such that AD = I,,, then there is an n X n matrix such that
CA=1,.
True This follows from the Invertible Matrix Theorem.

b) If the columns of A are linearly independent, then the columns of A span R™.
True Again, this follows from the Invertible Matrix Theorem.

c¢) If the equation Ax = b has at least one solution for each vector b in R", then the solution is
unique for each b in R™.
True This is another consequence of the Invertible Matrix Theorem.

d) If the linear transformation 7'(x) = Ax maps R" into R™, then A has n pivot positions.
False A could be any square n x n matrix and not all of them have n pivot positions.

e) If there is a vector b in R™, such that the equation Ax = b is inconsistent, then the transfor-
mation x — Ax is not one-to-one.
True If the equation Ax = b is inconsistent then A does not have a pivot in every row. As

A is a square matrix it does not have a pivot in every column. That implies that 7" is not
one-to-one.

3. §2.3.18 Let C be a 6 x 6 matrix such that the equation C'x = v is consistent for every vector v in
RS. Can there be a vector v, such that the equation Cx = v has more than one solution?

Solution: This is not possible. The condition that Cx = v has always a solution implies that
the map x — Cx is onto. As C is a square matrix this means that the map is also one-to-one. This
means that there is always a unique solution x for the equation Cx = v.

Part B

4. §2.3.32 Let A be an n X n matrix such that the equation Ax = 0 has only the trivial solution.
Without using the Invertible Matrix Theorem, explain directly why the equation Ax = b must
have a solution for each b.

Solution: As the equation Ax = 0 has only the trivial solution we know that A has a pivot in
every row. As A is a square matrix, it also has a pivot in every column. But that means that the
map x — Ax is onto. Hence the equation Ax = b must have a solution x for each b.

5. §3.1.8 Compute the determinant using a cofactor expansion across the first row.

Solution: Expanding along the first row we get:

4 3
6 5

4 0
6 1

S =

1
0
1

Tt W N

:4-’(1’ §‘+(1).‘ ‘+2-‘ ‘:4-6+(1)-11+2-(8):3.
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6. §3.1.10 Compute the determinant using a cofactor expansion. At each step use the most efficient

expansion.

Solution: We start by expanding across the second row, as this row has the most zeros.

1 -2 5 2
1 -2 2
0 0 3 0| Row2 Row 3 -2 2 1 -2
2 -4 -3 5 (_3)’; P (_3)'<2"—4 5'*5"2 —4‘)
2 0 3 5
= (=3)-(2:-(=2)+5-0)=12.
Part C

. §3.2.8 Find the determinant by row reduction to echelon form.

Solution: We row reduce the matrix to echelon form U. In each step we record the operation
performed and how it scales the determinant. We then multiply this number with the determinant
of U.

1 3 2 -4 1 3 2 -4
A— 0 1 2 =5 —2R1+R33R1+ R4 0o 1 2 =5
2 7T 6 =3 0 1 2 5
-3 —-10 -7 2 0 -1 -1 -10
132 —4 3 2 —4
—R2+R3,R2+Rd 01 2 -5 R34 0 2 -5 U
000 10 0 0 —10 '
0 01 -10 0O 0 0

As U is a diagonal matrix its determinant det(U) = 1-1-1-10 = 10. Adding a row to another
row does not change the determinant. Only the last step in the row reduction, where we swap a
row changes the sign of the determinant. Therefore

det(A) = —det(U) = —10.

. §3.2.18 Let A be the matrix

a b ¢ d e f
A= |d e f|, where det(A) =7.Find det(B), where B= |a b ¢
g h i g h 1

Solution: We obtain A from B by swapping row 1 and row 2. Therefore these two matrices differ
only by a factor of —1. We have det(B) = — det(A4) = —7.
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9. §3.2.28 True / False questions.

a) If three row interchanges are made in succession, then the new determinant equals the old
determinant.
False If we do three row interchanges in the matrix A to obtain the matrix B, then
det(B) = (—1)3det(A) = —det(A).
b) The determinant of A is the product of the diagonal entries in A.
False This is not true in general. Counterexample:
‘2 3

5 3’20752-3:6.

¢) If det(A) = 0 then two rows or two columns are the same, or a row or a column is zero.
False This is not true in general. Counterexample:

1 01
0 1 1| =0.
11 2
d) det(A)~! = (—1)det(A).
1
Fal Al = :
alse det(A) dct(4)

Part D
10. §4.1.2 Let W be the union of the first and third quadrants in the zy-plane. That is let

W = {[ﬂ , suchthatx-yEO}.

a) Ifuisin W and c is a number, is ¢ - uwin W? Why?
Solution: This is true.

C* U9

Ifu= [51] ,thenc-u= [C'UI] and (c-up)(c-ug) = c*(u1 - ug).
2

But as by definition of W we have u1 -us > 0, we also have (c-u1)(c-uz) = c(uq-ug) > 0.
That means that ¢ - u is also in W.

b) Find vectors u and v, such that u + v is not in W.

Solution: Foru = [_01] and v = [ﬂ we have thatu+v = [_1

that W can not be a vector space as it does not satisfy the subspace criteria.

1} is not in W. This means

11. §4.1.6 Determine whether all polynomials of the form p(t) = a +t2, where a is in R is a subspace
H of Py, the space of polynomials of degree two.
Solution: H is not a subspace, as q(t) = t? in H, but

2.¢2 isnotin V.
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12. §4.1.8 Determine whether all polynomials in IP,,, where p(0) = 0 form a subspace H of P,.
Solution: H is a subspace. We check the subspace criteria. Let p, ¢ be in H and c in R. Then we
have to show that

i) The zero polynomial O : t — O(t) = 0isin H,as O(0) = 0.
i) p+ ¢ in H: We check: (p + ¢)(0) = p(0) +¢(0) =0+0=0,s0p+ gin H.
iii) ¢-pin H: We check: (¢-p)(0) =c¢-p(0) =0,s0¢-pin H.

13. §4.1.32 Let H and K be subspaces of a vector space V. Show that the intersection H N K is
a subspace of V. Then give a counterexample in R? that the union H U K is not, in general, a
subspace.

Solution: We first look at H N K. To show that H N K is a subspace we check the subspace
criteria. Let v, w be in H N K and c in R. We know that

veHNK<veH and v e K.

Then we have to show that

i) The zero vector O isin H N K: As 0 € H and 0 € K - as both are subspaces - we know that
0c HNK.

i) v+ win H N K: We know that
veHNK=veH andweHNK=weEH.

Asv € H and w € H we know - as H is a subspace that . Similarly

veHNK=veKand we HNK =>we K.

Hence . But that implies that v+w in both subspaces, therefore v+w € HNK.
iii) ¢-vin H N K: We know that

veHNK=veH=cveH,

where the last implication follows from the facth that H is a subspace. By the same reasoning
cv € K. But that implies that cv in both subspaces, therefore cv € H N K.

As a counterexample take the lines L1 = Span { [(1)} } and Ly = Span { [ﬂ } It is easy to check

that these are both subspaces of R2. Consider L; U Lo. We have that

0| |1 0 1 1| . .
[J ) [0] € L1 U Ly but [1] + [0} = [1] isnotin L; U Lo.

Therefore L1 U Lo is not a subspace.




