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Part A

1. Let V,W be vector spaces and T : V →W be a linear map that is both one-to-one and onto. You
may assume that we know that in this case there is also an inverse map T−1 : W → V that is both
one-to-one and onto and such that

T ◦ T−1(w) = w for all w ∈W and T−1 ◦ T (v) = v for all v ∈ V.

a) Show that T−1 is also a linear map.
Solution: We have to show that for all w1,w2 ∈W and c ∈ R:

1.) T−1(w1 +w2) = T−1(w1) + T−1(w2).
2.) T−1(cw1) = cT−1(w1).

We start with 1.). As T is one-to-one and onto there are unique v1,v2 ∈ V , such that
w1 = T (v1) and w2 = T (v2). So 1.) can be written as

T−1(w1 +w2) = T−1(w1) + T−1(w2)

⇔ T−1(T (v1) + T (v2)) = T−1(T (v1) + T−1(T (v2))

T−1◦T=Id⇔ T−1(T (v1) + T (v2)) = v1 + v2

T is a linear map⇔ T−1(T (v1 + v2)) = v1 + v2

T−1◦T=Id⇔ v1 + v2 = v1 + v2.

Now the last statement is true. As all the steps are reversible, we know that also the first
equation must be true. So 1.) is true for T−1.
Now we look at 2.). As T is one-to-one and onto there are unique v1 ∈ V , such that
w1 = T (v1). So 2.) can be written as

T−1(cw1) = cT−1(w1)

⇔ T−1(cT (v1)) = cT−1(T (v1))

T−1◦T=Id⇔ T−1(cT (v1)) = cv1

T is a linear map⇔ T−1(T (cv1)) = cv1

T−1◦T=Id⇔ cv1 = cv1.

Now the last statement is true. As all the steps are reversible, we know that also the first
equation must be true. So 2.) is true for T−1. In total we have shown that T−1 is a linear
map.

b)* (optional) Show that the vectors v1,v2, . . . ,vp are linearly independent in V if and only if
the vectors T (v1), T (v2), . . . , T (vp) are linearly independent in W .
Solution: We have to show both directions. We start with the first direction:

(1) v1,v2, . . . ,vp lin. independent in V ⇒ T (v1), T (v2), . . . , T (vp) lin. independent in W (2).
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We know that the vectors v1,v2, . . . ,vp are linearly independent, so

c1v1 + c2v2 + . . .+ cpvp = 0 implies c1 = c2 = . . . = cp = 0. (3)

We want to show that the same is true for the vectors T (v1), T (v2), . . . , T (vp). Suppose
that

d1T (v1) + d2T (v2) + . . .+ dpT (vp) = 0
T linear⇔ T (d1v1 + d2v2 + . . .+ dpvp︸ ︷︷ ︸

=v

) = 0.

But T is one-to-one, so if T (v) = 0, then v = 0. So

d1v1 + d2v2 + . . .+ dpvp = v = 0.

But by (3) that means that d1 = d2 = . . . = dp = 0. But these were the weights for the
vectors (T (vi))i. So these vectors are also linearly independent.

(2)⇒ (1) We now prove the inverse direction. So

d1T (v1) + d2T (v2) + . . .+ dpT (vp) = 0⇒ d1 = d2 = . . . = dp = 0.

We now write down a linear dependence relation for the vectors (vi)i and take T on both
sides:

c1v1 + c2v2 + . . .+ cpvp = 0 ⇒ T (c1v1 + c2v2 + . . .+ cpvp) = T (0)

T linear⇔ c1T (v1) + c2T (v2) + . . .+ cpT (vp) = 0.

As the vectors (T (vi))i are linearly independent, this implies that c1 = c2 = . . . = cp = 0.
This means that the vectors (vi)i are also linearly independent.

c) Show that the vectors u1,u2, . . . ,ur span V if and only if the vectors T (u1), T (u2), . . . , T (ur)
span W .
Solution: We first show the direction

(1) Span(u1,u2, . . . ,ur) = V ⇒ Span(T (u1), T (u2), . . . , T (ur)) = W. (2)

Take any w in W . We know that there is v ∈ V , such that w = T (v) as T is onto.
Furthermore for this v ∈ V we know that there are weights c1, c2, . . . , cr, such that

v = c1u1 + c2u2 + . . .+ crur.

Taking T on both sides, we obtain:

w = T (v) = T (c1u1 + c2u2 + . . .+ crur) = c1T (u1) + c2T (u2) + . . .+ crT (ur).

So any w ∈W is in the span of the (T (vi))i.
(2) ⇒ (1) We now prove the inverse direction. So we take any v in V . We know that there



Math 22: Linear Algebra
Fall 2019 - Homework 6

Total: 20 points Return date: Wednesday 10/30/19

is w ∈ W , such that v = T−1(w) as T−1 is onto. Furthermore for this w ∈ W we know
that there are weights c1, c2, . . . , cr, such that

w = c1T (u1) + c2T (u2) + . . .+ crT (ur) = T (c1u1 + c2u2 + . . .+ crur).

Taking T−1 on both sides, we obtain:

v = T−1(w) = c1u1 + c2u2 + . . .+ crur.

So any v ∈ V is in the span of the (vi)i.
In total we have shown

(1) Span(u1,u2, . . . ,ur) = V ⇔ Span(T (u1), T (u2), . . . , T (ur)) = W. (2)

d) Argue that analogous statements for b) and c) are true for T−1.
Solution: All we used was that T is linear and both one-to-one and onto. As the same is true
for T−1 analogous statements for b) and c) apply to T−1.

Note: Let V be a vector space with basis B = {b1,b2, . . . ,bn} and

T : V → Rn,v 7→ T (v) = [v]B

be the coordinate map. Then this theorem says that linear dependence / independence and spanning
of vectors can always be examined in coordinates.

2. §4.5.12 Find the dimension of the subspace H given by the vectors

v1 =

 1
−2
0

 , v2 =

−34
1

 , v3 =

−86
5

 and v4 =

−30
7

 .

Solution: Following the lecture, we put the vectors into a matrix A = [v1,v2,v3,v4] and row
reduce the matrix to find the pivot columns.

A = [v1,v2,v3,v4] =

 1 −3 −8 −3
−2 4 6 0
0 1 5 7

→
 1 −3 −8 −3
0 1 5 7

0 0 0 4

 = ef(A).

We find that there are three pivot columns so the dimension of the subspace H is three. A basis B
of H is B = {v1,v2,v4}.

3. §4.5.22 The first four Laguerre polynomials are

p1(t) = 1 , p2(t) = 1− t , p3(t) = 2− 4t+ t2 and p4(t) = 6− 18t+ 9t2 − t3.
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Show that these polynomials form a basis B of P3.
Solution: We know that dim(P3) = 4. The coordinate vectors in terms of the standard basis
E = {1, t, t2, t3} are

[p1]E =


1
0
0
0

 , [p2]E =


1
−1
0
0

 , , [p3]E =


2
−4
1
0

 and [p4]E =


6
−18
9
−1

 .

Putting the vectors into a matrix A = [[p1]E , [p2]E , [p3]E , [p4]E ] we see that

A =


1 1 2 6

0 −1 −4 −18
0 0 1 9

0 0 0 −1

 .

A is already in echelon form and has a pivot in every column and row. That means that
B = {p1, p2, p3, p4} is a basis of P3.
Note: It is already sufficient to show that the polynomials are either linearly independent or span-
ning P3. As there are 4 and the dimension of P3 is also 4, that implies that these polynomials form
a basis.

4. §4.5.30 Mark each statement as true or false. Justify your answer.

a) If there exists a linearly dependent set {v1,v2, . . . ,vp} in V , then dim(V ) ≤ p.

False A counterexample is the set {

11
1

 ,

33
3

} in R3. Then dim(R3) = 3 which is greater

than 2.

b) If every set of p vectors in V fails to span V , then dim(V ) > p.
True If dim(V ) ≤ p then there would be a basis of V with p or less elements. This basis
would span V , which contradicts the statement. So dim(V ) > p.

c) If p ≥ 2, and dim(V ) = p then every set of p− 1 non-zero vectors is linearly independent.
False For a counterexample, consider the set in part a).

Part C

5. §4.6.2 Assume that the matrices A and B are row equivalent, where

A = [a1,a2,a3,a4,a5] =


1 −3 4 −1 9
−2 6 −6 −1 −10
−3 9 −6 −6 −3
3 −9 4 9 0

 and B =


1 −3 0 5 −7
0 0 2 −3 8

0 0 0 0 5
0 0 0 0 0

 =


r1
r2
r3
r4

 .
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a) List rank(A) and dim(Nul(A)).
Solution: rank(A) = #pivot columns = 3 and dim(Nul(A) = #non-pivot columns = 2.

b) Find a basis of Col(A).
Solution: A basis Bc of Col(A) is formed by the pivot columns of A . So Bc = {a1,a3,a5}.

c) Find a basis of Row(A).
Solution: A basis Br for Row(A) = Col(AT ) is formed by the pivot rows of B,
so Br = {r1, r2, r3}.

d) Find a basis of Nul(A).
Solution: To find a basis for Nul(A) we have to solve the equation Ax = 0 for x. To this
end we reduce [B|0] (or [A|0]) to echelon form and write the solutions in parametric vector
form:

[B|0] =


1 −3 0 5 −7 0

0 0 2 −3 8 0

0 0 0 0 5 0
0 0 0 0 0 0

→


1 −3 0 5 0 0

0 0 1 −3/2 0 0

0 0 0 0 1 0
0 0 0 0 0 0

 .

Writing out the corresponding equations and expressing the basic variables in terms of free
variables we obtain: 

x1

x2

x3

x4

x5

 = x2


3
1
0
0
0


︸︷︷︸
=v1

+x4


−5
0
3/2
1
0


︸ ︷︷ ︸
=v2

, where x2, x4 ∈ R.

A basis Bn of Nul(A) is Bn = {v1,v2}.

6. §4.6.8 Suppose a 5×6 matrix A has four pivot columns. What is dim(Nul(A))? Is Col(A) = R4?
Why or why not?
Solution: We know that dim(Col(A)) = 4 as the dimension of the column space is equal to the
number of pivot columns. As dim(Nul(A))+dim(Col(A)) = 6 we know that dim(Nul(A)) = 2.
It is not true that Col(A) is R4. Though dim(Col(A)) = 4 it is a subspace of R5.

7. §4.6.18 Mark each statement as true or false. Justify your answer.

a) If B is any echelon form of A, then the pivot columns of B form a basis of the
column space of A.
False Only the pivot columns of A span the column space of A.

b) Row operations preserve the linear dependence relations among the rows of A.
False Considering, for example, a row swap, we see that the weights change, so linear de-
pendence relations are not preserved. However, the row operations preserve the row space.
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c) The dimension of Nul(A) is the number of columns of A that are not pivot columns.
True The number of non-pivot columns is equal to the number of free variables. The number
of free variables is equal to the number of basis vectors of Nul(A), which is the dimension
of Nul(A).

d) The row space of AT is the same as the column space of A.
True This is true as the columns of A are the rows of AT .

e) If A and B are row equivalent, then their row spaces are the same.
True We saw in the lecture that row operations do not change the row space.

8. §4.6.26 Explain why an m× n matrix A, where m > n has full rank if and only if its columns are
linearly independent.
Solution: As m > n and rank(A) ≤ min{m,n} we know that rank(A) ≤ n. Therefore it is
maximal, if rank(A) = n or if A has n pivots. This is equal to the condition that the columns of
A are linearly independent.

Part D

9. §4.7.6 Let D = {d1,d2,d3} and F = {f1, f2, f3} be two bases for a vector space V and suppose
that

f1 = 2d1 − d2 + d3 , f2 = 3d2 + d3 , f3 = −3d1 + 2d3.

a) Find the change of coordinate matrix from F to D.
Solution: To find the change-of-coordinates matrix P

D←F
we first determine the coordinates

vectors of f1, f2, f3 in D coordinates. We have

[f1]D =

 2
−1
1

 , [f2]D =

03
1

 , [f3]D =

−30
2

 . So we have P
D←F

=

 2 0 −3
−1 3 0
1 1 2

 .

b) Find [x]D for x = f1 − 2f2 + 2f3.
Solution: We know that

[x]F =

 1
−2
2

 so [x]D = P
D←F

[x]F =

 2 0 −3
−1 3 0
1 1 2

 1
−2
2

 =

−4−7
3

 .

10. §4.7.10 For the bases B = {b1,b2} and C = {c1, c2} find the change of coordinate matrices
P

C←B
and P

B←C
, where

b1 =

[
7
−2

]
, b2 =

[
2
−1

]
and c1 =

[
4
1

]
, c2 =

[
5
2

]
.

Solution: Let E = {e1, e2} be the standard basis for R2, we know that

PB = P
E←B

= [b1,b2] =

[
7 2
−2 −1

]
and PC = P

E←C
= [c1, c2] =

[
4 5
1 2

]
.
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Then

P
C←B

= P
C←E

· P
E←B

= P−1
E←C

· P
E←B

= P−1C · PB =
1

3

[
2 −5
−1 4

]
·
[
7 2
−2 −1

]
=

[
8 3
−5 −2

]
.

P
B←C

= P−1
B←C

=

[
2 3
−5 −8

]
.

11. §4.7.14 In P2 find the change of coordinate matrix PB from the basis

B = {p1, p2, p3} = {1− 3t2 , 2 + t− 5t2 , 1 + 2t} to E = {1 , t , t2}.

Then write t2 as a linear combination of the polynomials in B.
Solution: To find the change-of-coordinates matrix P

E←B
= PB we first determine the coordinates

vectors of p1, p2, p3 in E coordinates.

[p1]E =

 1
0
−3

 , [p2]E =

 2
1
−5

 , [p3]E =

12
0

 , Therefore PB =

 1 2 1
0 1 2
−3 −5 0

 .

We know that [t2]E =

00
1

 = PB · [t2]B , so P−1B [t2]E = [t2]B and [t2]B =

 3
−2
1

 .

12. §4.7.19 (C) Let

P =

 1 2 −1
−3 −5 0
4 6 1

 and v1 =

−22
3

 , v2 =

−85
2

 , v3 =

−72
6

 .

Note: For this problem you should use a computer algebra program like Wolfram Alpha to find
the solutions. Unlike in the other problems you do not have to show your steps.

a) Find a basis U = {u1,u2,u3} for R3, such that P = P
V←U

is the change-of-coordinates

matrix from U to V .
Solution: We know that PV = P

E←V
= [v1,v2,v3] is the change-of-coordinates matrix from

V to the standard basis E. We also know that

P
V←U

= P
V←E

· P
E←U

= P−1V ·PU . Therefore PU = [u1,u2,u3] = PV · P
V←U

=

−6 −6 −5
−5 −9 0
21 32 3

 .

b) Find a basis W = {w1,w2,w3}, such that P = P
W←V

is the change-of-coordinates matrix

from V to W .
Solution: In a similar fashion we have

P
W←V

= P
W←E

· P
E←V

= P−1W ·PV . So PW = [w1,w2,w3] = PV · P−1
W←V

=

28 38 21
−9 −13 −7
−3 3 2

 .


