Part A

1. Let V, W be vector spaces and $T: V \to W$ be a linear map that is both one-to-one and onto. You may assume that we know that in this case there is also an inverse map $T^{-1}: W \to V$ that is both one-to-one and onto and such that

$$T \circ T^{-1}(\mathbf{w}) = \mathbf{w} \text{ for all } \mathbf{w} \in W \text{ and } T^{-1} \circ T(\mathbf{v}) = \mathbf{v} \text{ for all } \mathbf{v} \in V.$$

a) Show that T^{-1} is also a linear map.

Solution: We have to show that for all $\mathbf{w}_1, \mathbf{w}_2 \in W$ and $c \in \mathbb{R}$:

1.)
$$T^{-1}(\mathbf{w}_1 + \mathbf{w}_2) = T^{-1}(\mathbf{w}_1) + T^{-1}(\mathbf{w}_2).$$

2.)
$$T^{-1}(c\mathbf{w}_1) = cT^{-1}(\mathbf{w}_1)$$
.

We start with 1.). As T is one-to-one and onto there are unique $\mathbf{v}_1, \mathbf{v}_2 \in V$, such that $\mathbf{w}_1 = T(\mathbf{v}_1)$ and $\mathbf{w}_2 = T(\mathbf{v}_2)$. So 1.) can be written as

$$T^{-1}(\mathbf{w}_1 + \mathbf{w}_2) = T^{-1}(\mathbf{w}_1) + T^{-1}(\mathbf{w}_2)$$

$$\Leftrightarrow T^{-1}(T(\mathbf{v}_1) + T(\mathbf{v}_2)) = T^{-1}(T(\mathbf{v}_1) + T^{-1}(T(\mathbf{v}_2))$$

$$T^{-1} \stackrel{\circ}{\circ} T = Id \qquad T^{-1}(T(\mathbf{v}_1) + T(\mathbf{v}_2)) = \mathbf{v}_1 + \mathbf{v}_2$$

$$T \text{ is a linear map} \Leftrightarrow T^{-1}(T(\mathbf{v}_1 + \mathbf{v}_2)) = \mathbf{v}_1 + \mathbf{v}_2$$

$$T^{-1} \stackrel{\circ}{\circ} T = Id \qquad \mathbf{v}_1 + \mathbf{v}_2 = \mathbf{v}_1 + \mathbf{v}_2.$$

Now the last statement is true. As all the steps are reversible, we know that also the first equation must be true. So 1.) is true for T^{-1} .

Now we look at 2.). As T is one-to-one and onto there are unique $\mathbf{v}_1 \in V$, such that $\mathbf{w}_1 = T(\mathbf{v}_1)$. So 2.) can be written as

$$T^{-1}(c\mathbf{w}_1) = cT^{-1}(\mathbf{w}_1)$$

$$\Leftrightarrow \qquad T^{-1}(cT(\mathbf{v}_1)) = cT^{-1}(T(\mathbf{v}_1))$$

$$\overset{T^{-1} \circ T = Id}{\Leftrightarrow} \qquad T^{-1}(cT(\mathbf{v}_1)) = c\mathbf{v}_1$$

$$\overset{T \text{ is a linear map}}{\Leftrightarrow} \qquad T^{-1}(T(c\mathbf{v}_1)) = c\mathbf{v}_1$$

$$\overset{T^{-1} \circ T = Id}{\Leftrightarrow} \qquad c\mathbf{v}_1 = c\mathbf{v}_1.$$

Now the last statement is true. As all the steps are reversible, we know that also the first equation must be true. So 2.) is true for T^{-1} . In total we have shown that T^{-1} is a linear map.

b)* (optional) Show that the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ are linearly independent in V if and only if the vectors $T(\mathbf{v}_1), T(\mathbf{v}_2), \dots, T(\mathbf{v}_p)$ are linearly independent in W.

Solution: We have to show both directions. We start with the first direction:

 $(1) \quad \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p \quad \text{lin. independent in} \quad V \Rightarrow T(\mathbf{v}_1), T(\mathbf{v}_2), \dots, T(\mathbf{v}_p) \quad \text{lin. independent in} \quad W \quad (2).$

We know that the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ are linearly independent, so

$$c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_p \mathbf{v}_p = \mathbf{0}$$
 implies $c_1 = c_2 = \ldots = c_p = 0$. (3)

We want to show that the same is true for the vectors $T(\mathbf{v}_1), T(\mathbf{v}_2), \dots, T(\mathbf{v}_p)$. Suppose that

$$d_1T(\mathbf{v}_1) + d_2T(\mathbf{v}_2) + \ldots + d_pT(\mathbf{v}_p) = \mathbf{0} \overset{T \text{ linear }}{\Leftrightarrow} T(\underbrace{d_1\mathbf{v}_1 + d_2\mathbf{v}_2 + \ldots + d_p\mathbf{v}_p}_{=\mathbf{v}}) = \mathbf{0}.$$

But T is one-to-one, so if $T(\mathbf{v}) = \mathbf{0}$, then $\mathbf{v} = \mathbf{0}$. So

$$d_1\mathbf{v}_1 + d_2\mathbf{v}_2 + \ldots + d_p\mathbf{v}_p = \mathbf{v} = \mathbf{0}.$$

But by (3) that means that $d_1 = d_2 = \ldots = d_p = 0$. But these were the weights for the vectors $(T(\mathbf{v}_i))_i$. So these vectors are also linearly independent.

 $(2) \Rightarrow (1)$ We now prove the inverse direction. So

$$d_1T(\mathbf{v}_1) + d_2T(\mathbf{v}_2) + \ldots + d_nT(\mathbf{v}_n) = \mathbf{0} \Rightarrow d_1 = d_2 = \ldots = d_n = 0.$$

We now write down a linear dependence relation for the vectors $(\mathbf{v}_i)_i$ and take T on both sides:

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \ldots + c_p\mathbf{v}_p = \mathbf{0} \quad \Rightarrow \quad T(c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \ldots + c_p\mathbf{v}_p) = T(\mathbf{0})$$

$$\stackrel{T \text{ linear}}{\Leftrightarrow} \quad c_1T(\mathbf{v}_1) + c_2T(\mathbf{v}_2) + \ldots + c_pT(\mathbf{v}_p) = \mathbf{0}.$$

As the vectors $(T(\mathbf{v}_i))_i$ are linearly independent, this implies that $c_1 = c_2 = \ldots = c_p = 0$. This means that the vectors $(\mathbf{v}_i)_i$ are also linearly independent.

c) Show that the vectors $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_r$ span V if and only if the vectors $T(\mathbf{u}_1), T(\mathbf{u}_2), \dots, T(\mathbf{u}_r)$ span W.

Solution: We first show the direction

(1)
$$\operatorname{Span}(\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_r) = V \Rightarrow \operatorname{Span}(T(\mathbf{u}_1), T(\mathbf{u}_2), \dots, T(\mathbf{u}_r)) = W.$$
 (2)

Take any \mathbf{w} in W. We know that there is $\mathbf{v} \in V$, such that $\mathbf{w} = T(\mathbf{v})$ as T is onto. Furthermore for this $\mathbf{v} \in V$ we know that there are weights c_1, c_2, \ldots, c_r , such that

$$\mathbf{v} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \ldots + c_r \mathbf{u}_r.$$

Taking T on both sides, we obtain:

$$\mathbf{w} = T(\mathbf{v}) = T(c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \ldots + c_r\mathbf{u}_r) = c_1T(\mathbf{u}_1) + c_2T(\mathbf{u}_2) + \ldots + c_rT(\mathbf{u}_r).$$

So any $\mathbf{w} \in W$ is in the span of the $(T(\mathbf{v}_i))_i$.

 $(2) \Rightarrow (1)$ We now prove the inverse direction. So we take any v in V. We know that there

is $\mathbf{w} \in W$, such that $\mathbf{v} = T^{-1}(\mathbf{w})$ as T^{-1} is onto. Furthermore for this $\mathbf{w} \in W$ we know that there are weights c_1, c_2, \ldots, c_r , such that

$$\mathbf{w} = c_1 T(\mathbf{u}_1) + c_2 T(\mathbf{u}_2) + \ldots + c_r T(\mathbf{u}_r) = T(c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \ldots + c_r \mathbf{u}_r).$$

Taking T^{-1} on both sides, we obtain:

$$\mathbf{v} = T^{-1}(\mathbf{w}) = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \ldots + c_r \mathbf{u}_r.$$

So any $\mathbf{v} \in V$ is in the span of the $(\mathbf{v}_i)_i$.

In total we have shown

(1)
$$\operatorname{Span}(\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_r) = V \Leftrightarrow \operatorname{Span}(T(\mathbf{u}_1), T(\mathbf{u}_2), \dots, T(\mathbf{u}_r)) = W.$$
 (2)

d) Argue that analogous statements for b) and c) are true for T^{-1} . **Solution:** All we used was that T is linear and both one-to-one and onto. As the same is true for T^{-1} analogous statements for b) and c) apply to T^{-1} .

Note: Let V be a vector space with basis $B = \{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$ and

$$T: V \to \mathbb{R}^n, \mathbf{v} \mapsto T(\mathbf{v}) = [\mathbf{v}]_B$$

be the coordinate map. Then this theorem says that linear dependence / independence and spanning of vectors can always be examined in coordinates.

2. $\S4.5.12$ Find the dimension of the subspace H given by the vectors

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix} , \ \mathbf{v}_2 = \begin{bmatrix} -3 \\ 4 \\ 1 \end{bmatrix} , \ \mathbf{v}_3 = \begin{bmatrix} -8 \\ 6 \\ 5 \end{bmatrix} \text{ and } \mathbf{v}_4 = \begin{bmatrix} -3 \\ 0 \\ 7 \end{bmatrix}.$$

Solution: Following the lecture, we put the vectors into a matrix $A = [\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4]$ and row reduce the matrix to find the pivot columns.

$$A = [\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4] = \begin{bmatrix} 1 & -3 & -8 & -3 \\ -2 & 4 & 6 & 0 \\ 0 & 1 & 5 & 7 \end{bmatrix} \rightarrow \begin{bmatrix} \boxed{1} & -3 & -8 & -3 \\ 0 & \boxed{1} & 5 & 7 \\ 0 & 0 & 0 & \boxed{4} \end{bmatrix} = \operatorname{ef}(A).$$

We find that there are three pivot columns so the dimension of the subspace H is three. A basis B of H is $B = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_4\}$.

3. §4.5.22 The first four Laguerre polynomials are

$$p_1(t) = 1$$
, $p_2(t) = 1 - t$, $p_3(t) = 2 - 4t + t^2$ and $p_4(t) = 6 - 18t + 9t^2 - t^3$.

Show that these polynomials form a basis B of \mathbb{P}_3 .

Solution: We know that $\dim(\mathbb{P}_3) = 4$. The coordinate vectors in terms of the standard basis $E = \{1, t, t^2, t^3\}$ are

$$[p_1]_E = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
, $[p_2]_E = \begin{bmatrix} 1 \\ -1 \\ 0 \\ 0 \end{bmatrix}$, , $[p_3]_E = \begin{bmatrix} 2 \\ -4 \\ 1 \\ 0 \end{bmatrix}$ and $[p_4]_E = \begin{bmatrix} 6 \\ -18 \\ 9 \\ -1 \end{bmatrix}$.

Putting the vectors into a matrix $A = [[p_1]_E, [p_2]_E, [p_3]_E, [p_4]_E]$ we see that

$$A = \begin{bmatrix} \boxed{1} & 1 & 2 & 6 \\ 0 & \boxed{-1} & -4 & -18 \\ 0 & 0 & \boxed{1} & 9 \\ 0 & 0 & 0 & \boxed{-1} \end{bmatrix}.$$

A is already in echelon form and has a pivot in every column and row. That means that $B = \{p_1, p_2, p_3, p_4\}$ is a basis of \mathbb{P}_3 .

Note: It is already sufficient to show that the polynomials are either linearly independent or spanning \mathbb{P}_3 . As there are 4 and the dimension of \mathbb{P}_3 is also 4, that implies that these polynomials form a basis.

- 4. §4.5.30 Mark each statement as true or false. Justify your answer.
 - a) If there exists a linearly dependent set $\{\mathbf v_1, \mathbf v_2, \dots, \mathbf v_p\}$ in V, then $\dim(V) \leq p$. False A counterexample is the set $\{\begin{bmatrix}1\\1\\1\end{bmatrix}, \begin{bmatrix}3\\3\\3\end{bmatrix}\}$ in $\mathbb R^3$. Then $\dim(\mathbb R^3)=3$ which is greater than 2.
 - b) If every set of p vectors in V fails to span V, then $\dim(V) > p$. **True** If $\dim(V) \le p$ then there would be a basis of V with p or less elements. This basis would span V, which contradicts the statement. So $\dim(V) > p$.
 - c) If $p \ge 2$, and $\dim(V) = p$ then every set of p-1 non-zero vectors is linearly independent. **False** For a counterexample, consider the set in part a).

Part C

5. $\S4.6.2$ Assume that the matrices A and B are row equivalent, where

$$A = [\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \mathbf{a}_4, \mathbf{a}_5] = \begin{bmatrix} 1 & -3 & 4 & -1 & 9 \\ -2 & 6 & -6 & -1 & -10 \\ -3 & 9 & -6 & -6 & -3 \\ 3 & -9 & 4 & 9 & 0 \end{bmatrix} \text{ and } B = \begin{bmatrix} \boxed{1} & -3 & 0 & 5 & -7 \\ 0 & 0 & \boxed{2} & -3 & 8 \\ 0 & 0 & 0 & 0 & \boxed{5} \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} \mathbf{r}_1 \\ \mathbf{r}_2 \\ \mathbf{r}_3 \\ \mathbf{r}_4 \end{bmatrix}.$$

a) List rank(A) and dim(Nul(A)).

Solution: $rank(A) = \#pivot \ columns = 3 \ and \ dim(Nul(A) = \#non-pivot \ columns = 2.$

b) Find a basis of Col(A).

Solution: A basis B_c of Col(A) is formed by the pivot columns of A. So $B_c = \{a_1, a_3, a_5\}$.

c) Find a basis of Row(A).

Solution: A basis B_r for $\text{Row}(A) = \text{Col}(A^T)$ is formed by the pivot rows of B, so $B_r = \{\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3\}$.

d) Find a basis of Nul(A).

Solution: To find a basis for Nul(A) we have to solve the equation $A\mathbf{x} = \mathbf{0}$ for \mathbf{x} . To this end we reduce $[B|\mathbf{0}]$ (or $[A|\mathbf{0}]$) to echelon form and write the solutions in parametric vector form:

$$[B|\mathbf{0}] = \begin{bmatrix} \boxed{1} & -3 & 0 & 5 & -7 & 0 \\ 0 & 0 & \boxed{2} & -3 & 8 & 0 \\ 0 & 0 & 0 & 0 & \boxed{5} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} \boxed{1} & -3 & 0 & 5 & 0 & 0 \\ 0 & 0 & \boxed{1} & -3/2 & 0 & 0 \\ 0 & 0 & 0 & 0 & \boxed{1} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

Writing out the corresponding equations and expressing the basic variables in terms of free variables we obtain:

$$\begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \\ \mathbf{x}_4 \\ \mathbf{x}_5 \end{bmatrix} = x_2 \begin{bmatrix} 3 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -5 \\ 0 \\ 3/2 \\ 1 \\ 0 \end{bmatrix}, \text{ where } x_2, x_4 \in \mathbb{R}.$$

A basis B_n of Nul(A) is $B_n = \{\mathbf{v}_1, \mathbf{v}_2\}$.

6. §4.6.8 Suppose a 5×6 matrix A has four pivot columns. What is $\dim(\text{Nul}(A))$? Is $\text{Col}(A) = \mathbb{R}^4$? Why or why not?

Solution: We know that $\dim(\operatorname{Col}(A)) = 4$ as the dimension of the column space is equal to the number of pivot columns. As $\dim(\operatorname{Nul}(A)) + \dim(\operatorname{Col}(A)) = 6$ we know that $\dim(\operatorname{Nul}(A)) = 2$. It is **not** true that $\operatorname{Col}(A)$ is \mathbb{R}^4 . Though $\dim(\operatorname{Col}(A)) = 4$ it is a subspace of \mathbb{R}^5 .

- 7. §4.6.18 Mark each statement as true or false. Justify your answer.
 - a) If B is any echelon form of A, then the pivot columns of B form a basis of the column space of A.

False Only the pivot columns of A span the column space of A.

b) Row operations preserve the linear dependence relations among the rows of A.
 False Considering, for example, a row swap, we see that the weights change, so linear dependence relations are not preserved. However, the row operations preserve the row space.

c) The dimension of $\operatorname{Nul}(A)$ is the number of columns of A that are not pivot columns. **True** The number of non-pivot columns is equal to the number of free variables. The number of free variables is equal to the number of basis vectors of $\operatorname{Nul}(A)$, which is the dimension of $\operatorname{Nul}(A)$.

- d) The row space of A^T is the same as the column space of A. **True** This is true as the columns of A are the rows of A^T .
- e) If A and B are row equivalent, then their row spaces are the same. **True** We saw in the lecture that row operations do not change the row space.
- 8. $\S4.6.26$ Explain why an $m \times n$ matrix A, where m > n has full rank if and only if its columns are linearly independent.

Solution: As m > n and $\operatorname{rank}(A) \leq \min\{m, n\}$ we know that $\operatorname{rank}(A) \leq n$. Therefore it is maximal, if $\operatorname{rank}(A) = n$ or if A has n pivots. This is equal to the condition that the columns of A are linearly independent.

Part D

9. §4.7.6 Let $D = \{\mathbf{d}_1, \mathbf{d}_2, \mathbf{d}_3\}$ and $F = \{\mathbf{f}_1, \mathbf{f}_2, \mathbf{f}_3\}$ be two bases for a vector space V and suppose that

$$\mathbf{f}_1 = 2\mathbf{d}_1 - \mathbf{d}_2 + \mathbf{d}_3$$
, $\mathbf{f}_2 = 3\mathbf{d}_2 + \mathbf{d}_3$, $\mathbf{f}_3 = -3\mathbf{d}_1 + 2\mathbf{d}_3$.

a) Find the change of coordinate matrix from F to D.

Solution: To find the change-of-coordinates matrix $P \in P$ we first determine the coordinates vectors of $\mathbf{f}_1, \mathbf{f}_2, \mathbf{f}_3$ in D coordinates. We have

$$[\mathbf{f}_1]_D = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix} \ , \ [\mathbf{f}_2]_D = \begin{bmatrix} 0 \\ 3 \\ 1 \end{bmatrix} \ , \ [\mathbf{f}_3]_D = \begin{bmatrix} -3 \\ 0 \\ 2 \end{bmatrix} \ . \ \text{So we have} \ \ \underset{D \leftarrow F}{P} = \begin{bmatrix} 2 & 0 & -3 \\ -1 & 3 & 0 \\ 1 & 1 & 2 \end{bmatrix} .$$

b) Find $[\mathbf{x}]_D$ for $\mathbf{x} = \mathbf{f}_1 - 2\mathbf{f}_2 + 2\mathbf{f}_3$.

Solution: We know that

$$[\mathbf{x}]_F = \begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix}$$
 so $[\mathbf{x}]_D = \underset{D \leftarrow F}{P}[\mathbf{x}]_F = \begin{bmatrix} 2 & 0 & -3 \\ -1 & 3 & 0 \\ 1 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix} = \begin{bmatrix} -4 \\ -7 \\ 3 \end{bmatrix}$.

10. §4.7.10 For the bases $B = \{\mathbf{b}_1, \mathbf{b}_2\}$ and $C = \{\mathbf{c}_1, \mathbf{c}_2\}$ find the change of coordinate matrices P and P, where

$$\mathbf{b}_1 = \begin{bmatrix} 7 \\ -2 \end{bmatrix}$$
, $\mathbf{b}_2 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$ and $\mathbf{c}_1 = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$, $\mathbf{c}_2 = \begin{bmatrix} 5 \\ 2 \end{bmatrix}$.

Solution: Let $E = \{e_1, e_2\}$ be the standard basis for \mathbb{R}^2 , we know that

$$P_B = \underset{E \leftarrow B}{P} = [\mathbf{b}_1, \mathbf{b}_2] = \begin{bmatrix} 7 & 2 \\ -2 & -1 \end{bmatrix} \text{ and } P_C = \underset{E \leftarrow C}{P} = [\mathbf{c}_1, \mathbf{c}_2] = \begin{bmatrix} 4 & 5 \\ 1 & 2 \end{bmatrix}.$$

Then

$$\begin{array}{rcl}
P_{C \leftarrow B} &=& P_{C \leftarrow E} \cdot P_{E \leftarrow B} = P_{E \leftarrow C}^{-1} \cdot P_{E \leftarrow B} = P_{C}^{-1} \cdot P_{B} = \frac{1}{3} \begin{bmatrix} 2 & -5 \\ -1 & 4 \end{bmatrix} \cdot \begin{bmatrix} 7 & 2 \\ -2 & -1 \end{bmatrix} = \begin{bmatrix} 8 & 3 \\ -5 & -2 \end{bmatrix}.$$

$$\begin{array}{rcl}
P_{B \leftarrow C} &=& P_{C \leftarrow E}^{-1} = \begin{bmatrix} 2 & 3 \\ -5 & -8 \end{bmatrix}.$$

11. §4.7.14 In \mathbb{P}_2 find the change of coordinate matrix P_B from the basis

$$B = \{p_1, p_2, p_3\} = \{1 - 3t^2, 2 + t - 5t^2, 1 + 2t\}$$
 to $E = \{1, t, t^2\}$.

Then write t^2 as a linear combination of the polynomials in B.

Solution: To find the change-of-coordinates matrix $\underset{E \leftarrow B}{P} = P_B$ we first determine the coordinates vectors of p_1, p_2, p_3 in E coordinates.

$$[p_1]_E = \begin{bmatrix} 1 \\ 0 \\ -3 \end{bmatrix} \ , [p_2]_E = \begin{bmatrix} 2 \\ 1 \\ -5 \end{bmatrix} \ , [p_3]_E = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} \ , \ \text{Therefore} \ \ P_B = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \\ -3 & -5 & 0 \end{bmatrix}.$$

We know that
$$[t^2]_E = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = P_B \cdot [t^2]_B$$
, so $P_B^{-1}[t^2]_E = [t^2]_B$ and $[t^2]_B = \begin{bmatrix} 3 \\ -2 \\ 1 \end{bmatrix}$.

12. §4.7.19 (**C**) Let

$$P = \begin{bmatrix} 1 & 2 & -1 \\ -3 & -5 & 0 \\ 4 & 6 & 1 \end{bmatrix} \text{ and } \mathbf{v}_1 = \begin{bmatrix} -2 \\ 2 \\ 3 \end{bmatrix} , \ \mathbf{v}_2 = \begin{bmatrix} -8 \\ 5 \\ 2 \end{bmatrix} , \ \mathbf{v}_3 = \begin{bmatrix} -7 \\ 2 \\ 6 \end{bmatrix}.$$

Note: For this problem you **should** use a computer algebra program like Wolfram Alpha to find the solutions. Unlike in the other problems you do not have to show your steps.

a) Find a basis $U = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ for \mathbb{R}^3 , such that $P = \underset{V \leftarrow U}{P}$ is the change-of-coordinates matrix from U to V.

Solution: We know that $P_V = \underset{E \leftarrow V}{P} = [\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3]$ is the change-of-coordinates matrix from V to the standard basis E. We also know that

$$P_{V \leftarrow U} = P_{V \leftarrow E} \cdot P_{E \leftarrow U} = P_{V}^{-1} \cdot P_{U}. \text{ Therefore } P_{U} = [\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}] = P_{V} \cdot P_{V \leftarrow U} = \begin{vmatrix} -6 & -6 & -5 \\ -5 & -9 & 0 \\ 21 & 32 & 3 \end{vmatrix}.$$

b) Find a basis $W = \{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$, such that $P = \underset{W \leftarrow V}{P}$ is the change-of-coordinates matrix from V to W.

Solution: In a similar fashion we have

$$P_{W \leftarrow V} = P_{W \leftarrow E} \cdot P_{E \leftarrow V} = P_{W}^{-1} \cdot P_{V}. \text{ So } P_{W} = [\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}] = P_{V} \cdot P_{W \leftarrow V}^{-1} = \begin{bmatrix} 28 & 38 & 21 \\ -9 & -13 & -7 \\ -3 & 3 & 2 \end{bmatrix}.$$