Numbered problems are taken from Lay, D. et al: *Linear Algebra with Applications*, fifth edition. Please show your work; no credit is given for solutions without work or justification. For questions marked with a **(C)** a computer algebra system can be used and intermediate steps are not asked.

Part B

1. $\S6.4.10$ Find an orthogonal basis for the column space Col(A) of the matrix

$$A = \begin{bmatrix} -1 & 6 & 6 \\ 3 & -8 & 3 \\ 1 & -2 & 6 \\ 1 & -4 & -3 \end{bmatrix} = [\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3].$$

Solution: To find an orthogonal basis $U = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ we have to apply the Gram-Schmidt process to the basis vectors $B = \{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$ formed by the columns of the matrix A. Following the algorithm we get

$$\mathbf{u}_{1} = \mathbf{a}_{1}$$

$$\mathbf{u}_{2} = \mathbf{a}_{2} - \frac{\mathbf{a}_{2} \bullet \mathbf{u}_{1}}{\mathbf{u}_{1} \bullet \mathbf{u}_{1}} \mathbf{u}_{1} = \mathbf{a}_{2} - (-3)\mathbf{u}_{1} = \begin{bmatrix} 3\\1\\1\\-1 \end{bmatrix}$$

$$\mathbf{u}_{3} = \mathbf{a}_{3} - \frac{\mathbf{a}_{3} \bullet \mathbf{u}_{1}}{\mathbf{u}_{1} \bullet \mathbf{u}_{1}} \mathbf{u}_{1} - \frac{\mathbf{a}_{3} \bullet \mathbf{u}_{2}}{\mathbf{u}_{2} \bullet \mathbf{u}_{2}} \mathbf{u}_{2} = \begin{bmatrix} -1\\-1\\3\\-1 \end{bmatrix}.$$

So the orthogonal basis is $U = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$.

- 2. §6.4.18 True / False questions
 - a) If $W = \text{Span}\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}$ with $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}$ linearly independent, and if $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is an orthogonal set in W, then $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a basis for W.

Solution: This is false. The zero vector $\mathbf{0}$ could be in the set $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$. However, any set of non-zero orthogonal vectors is linearly independent.

b) If x is not in a subspace W then $\mathbf{x} - \operatorname{proj}_W(\mathbf{x})$ is not zero.

Solution: This is true. $\mathbf{z} = \mathbf{x} - \operatorname{proj}_W(\mathbf{x}) \in W^{\perp}$. By the **Orthogonal Decomposition** Theorem we have that $\mathbf{x} = \operatorname{proj}_W(\mathbf{x}) + \mathbf{z}$. So if $\mathbf{z} = \mathbf{0}$ then $\mathbf{x} \in W$, a contradiction.

c) In a QR factorization, say A = QR (when A has linearly dependent columns), the columns of Q form an orthonormal basis of Col(A).

Solution: This is true. This follows from the lecture.

3. §6.5.4 Find a least square solution $\hat{\mathbf{x}}$ of $A\hat{\mathbf{x}} = \mathbf{b}$, where

$$A = \begin{bmatrix} 1 & 3 \\ 1 & -1 \\ 1 & 1 \end{bmatrix} \quad \text{and} \quad \mathbf{b} = \begin{bmatrix} 5 \\ 1 \\ 0 \end{bmatrix}.$$

Solution: Following the lecture we have to solve the equation $A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$. We obtain:

$$A^T A = \begin{bmatrix} 3 & 3 \\ 3 & 11 \end{bmatrix} \quad A^T \mathbf{b} = \begin{bmatrix} 6 \\ 14 \end{bmatrix} \text{ and } \hat{\mathbf{x}} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

Part C

4. $\S6.6.12$ (C) A child's systolic blood pressure p and weight w are approximately related by the equation

$$\beta_0 + \beta_1 \ln(w) = p$$

Use the experimental data given in the text to estimate the child's blood pressure.

Solution: We have to find an (approximative) least square solution for the following equations:

So we have to solve the equation $X^T X \hat{\beta} = X^T \mathbf{y}$. We obtain

$$\hat{\beta} = \begin{bmatrix} 18.56 \\ 19.24 \end{bmatrix}$$
. Therefore $p = 18.56 + 19.24 \ln(w)$.

For w = 100 we obtain approximately p = 107.

5. §5.1.12 Find a basis for the eigenspaces of A, where

$$A = \begin{bmatrix} 7 & 4 \\ -3 & -1 \end{bmatrix} \text{ and } \lambda_1 = 1 , \ \lambda_2 = 5.$$

Solution: As we already know the eigenvalues we have to find the eigenspaces $\text{Eig}(A, \lambda_i) = \text{Nul}(A - \lambda_i I_2)$. We obtain:

$$\lambda_1 = 1: A - I_2 = \begin{bmatrix} 6 & 4 \\ -3 & -2 \end{bmatrix} \text{ and } \operatorname{Nul}(A - I_2) = \operatorname{Span}\left\{ \begin{bmatrix} -2/3 \\ 1 \end{bmatrix} \right\}$$

$$\lambda_2 = 5: A - 5I_2 = \begin{bmatrix} 2 & 4 \\ -3 & -6 \end{bmatrix} \text{ and } \operatorname{Nul}(A - 5I_2) = \operatorname{Span}\left\{ \begin{bmatrix} -2 \\ 1 \end{bmatrix} \right\}.$$

6. §5.1.20 Without calculation, find one eigenvalue and two linearly independent eigenvectors of

$$A = \begin{bmatrix} 5 & 5 & 5 \\ 5 & 5 & 5 \\ 5 & 5 & 5 \end{bmatrix}.$$

Solution: The matrix is not invertible, as all rows are the same. So we know that

 $A\mathbf{x} = \mathbf{0} = 0\mathbf{x}$ has a non-trivial solution.

It is easy to see that $\dim(A - 0I_3) = 2$. A solution is any vector **x**, such that

$$x_1 \begin{bmatrix} 5 \\ 5 \\ 5 \end{bmatrix} + x_2 \begin{bmatrix} 5 \\ 5 \\ 5 \end{bmatrix} + x_3 \begin{bmatrix} 5 \\ 5 \\ 5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

We can see that $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$ are two linearly independent solutions.

Additionally, as the sum in each row is the same, we can also find

$$\begin{bmatrix} 5 & 5 & 5 \\ 5 & 5 & 5 \\ 5 & 5 & 5 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \\ 5 \end{bmatrix} = 15 \cdot \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}.$$

$$= \mathbf{v}_3$$

So v_3 is an eigenvector for the eigenvalue 15.

Part D

7. §5.1.26 Show that if $A^2 = O$ is the zero matrix, then the only eigenvalue of A is 0. **Solution:** If $\mathbf{x} \neq \mathbf{0}$ is an eigenvector, then

$$A\mathbf{x} = \lambda \cdot \mathbf{x}$$
.

To relate this equation to $A^2 = A \cdot A = O$, we multiply both sides by A from the left and obtain

$$\mathbf{0} = O\mathbf{x} = A^2\mathbf{x} = A(\lambda \cdot \mathbf{x}) = \lambda \cdot (A\mathbf{x}) = \lambda^2\mathbf{x}$$
. Therefore $\lambda^2\mathbf{x} = \mathbf{0}$.

As $\mathbf{x} \neq \mathbf{0}$, we obtain $\lambda^2 = 0$ hence $\lambda = 0$.

8. §5.2.12 Find the characteristic polynomial of the matrix

$$A = \begin{bmatrix} -1 & 0 & 1 \\ -3 & 4 & 1 \\ 0 & 0 & 2 \end{bmatrix}.$$

Solution: We have to find $det(A - \lambda I_3)$. We obtain

$$\det(A - \lambda I_3) = \begin{vmatrix} -1 - \lambda & 0 & 1 \\ -3 & 4 - \lambda & 1 \\ 0 & 0 & 2 - \lambda \end{vmatrix} = (2 - \lambda) \cdot \begin{vmatrix} -1 - \lambda & 0 \\ -3 & 4 - \lambda \end{vmatrix}$$
$$= (2 - \lambda)(-1 - \lambda)(4 - \lambda) = -\lambda^3 + 5\lambda^2 - 2\lambda - 8.$$

9. §5.2.18 Find h in the matrix A, such that the eigenspace for $\lambda = 5$ is two-dimensional, where

$$A = \begin{bmatrix} 5 & -2 & 6 & -1 \\ 0 & 3 & h & 0 \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Solution: For the matrix $A - 5I_4$ we obtain

$$A - 5I_4 = B = \begin{bmatrix} 0 & -2 & 6 & -1 \\ 0 & -2 & h & 0 \\ 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & -4 \end{bmatrix}$$

We can find the dimension of $Nul(A - 5I_4) = Nul(B)$ by row reducing $[B|\mathbf{0}]$ to echelon form. We find

$$[B|\mathbf{0}] = \begin{bmatrix} 0 & -2 & 6 & -1 & 0 \\ 0 & -2 & h & 0 & 0 \\ 0 & 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & -4 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & \boxed{1} & -3 & 0 & 0 \\ 0 & 0 & h - 6 & 0 & 0 \\ 0 & 0 & 0 & \boxed{1} & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

The dimension of Nul(B) is the number of non-pivot columns. We get two non-pivot columns if h=6. So $\dim(Nul(A-5I_4))=2$ if h=6.