Math 22 – Linear Algebra and its applications

- Lecture 18 -

Instructor: Bjoern Muetzel

GENERAL INFORMATION

- Office hours: Tu 1-3 pm, Th, Sun 2-4 pm in KH 229
 <u>Tutorial:</u> Tu, Th, Sun 7-9 pm in KH 105
- Homework 6: due next Wednesday at 4 pm outside KH 008.
 Please divide into the parts A, C and D. Exercise 1 b) is optional.
- **<u>Project:</u>** Meeting this weekend!
- Midterm 2: Friday Nov 1 at 4 pm in Carpenter 013
 - **Topics: Chapter 2.1 4.7** (included)
 - about **8-9** questions
 - Practice exam 2 available on Sunday

4.6

RANK OF A MATRIX

FIFTH EDITION

David C. Lay • Steven R. Lay • Judi J. McDonald

Summary:

- We can consider the rows of a matrix as row vectors. The row space is the vector space spanned by these vectors.
- The Rank Theorem sums up the relation between the null space, the column space and the rank of a matrix.

THE ROW SPACE

- If A is an $m \times n$ matrix, each row of A has n entries and thus can be identified with a vector in \mathbb{R}^n .
- **Definition:** The set of all linear combinations of the row vectors is called the **row space** of *A* and is denoted by Row *A*. Each row has *n* entries, so Row *A* is a subspace of \mathbb{R}^n . Clearly

 $\operatorname{Row} A = \operatorname{Col} A^{\mathrm{T}}$

Motivation: We will see later that $|\mathbb{R}^n = \operatorname{Nul} A + \operatorname{Row} A.|$

Note: As Row $A = \text{Col } A^{\text{T}}$ clearly, the pivot columns of A^{T} form a basis of Row A.

Figure:

However, when we have already calculated the echelon form U of A, then there is an <u>easier way</u> to get a **basis for Row** A:

Theorem 13:

- a) If two matrices *A* and *B* are row equivalent, then their row spaces are the same.
- b) If *U* is the echelon form of A, then the nonzero rows of *U* form a basis for the row space of *A* as well as for that of *U*. Furthermore $\operatorname{dim} \operatorname{Row} A = \operatorname{dim} \operatorname{Col} A$

Warning: This time the rows of the echelon form *U* of *A* span the row space Row *A*, not the rows of *A* itself.

Proof: 1.)We noticed in the last lecture that elementary column operations do not change the column space of a matrix.

2.) As $\operatorname{Col} A^{\mathrm{T}} = \operatorname{Row} A$ this means that elementary row operations do not change the row space Row A.

3.) The non-zero rows of U are linearly independent (as row vectors)

4.) Then number of non-zero rows of *U* is equal to the number of pivot columns of U, hence dim Row $A = \dim \text{Col } A$.

THE ROW SPACE

• **Example:** Find bases for the row space, the column space, and the null space of the matrix

$$A = \begin{bmatrix} -2 & -5 & 8 & 0 & -17 \\ 1 & 3 & -5 & 1 & 5 \\ 3 & 11 & -19 & 7 & 1 \\ 1 & 7 & -13 & 5 & -3 \end{bmatrix}$$

and determine the dimensions of Row A, Col A and Nul A.

THE ROW SPACE

Observation: Unlike the basis for Col *A*, the bases for Row *A* and Nul *A* have no simple connection with the entries in *A* itself.

THE RANK THEOREM

Definition: The **rank** of *A* is the dimension of the column space of *A*.

rank $A = \dim \operatorname{Col} A$

Since Row A is the same as $Col A^T$, we have

rank A^T = dim Col A^T = dim Row A

• **Theorem 14*:** Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear map and *A* be the corresponding standard matrix. Then

a) rank A^T = dim Row A = dim Col A = rank A , hence

b) rank A + dim Nul A = n or equally c) dim $T(\mathbb{R}^n)$ + dim Nul(T) = dim (\mathbb{R}^n)

Proof: The dimensions of these spaces can be deduced from the number of pivot or non-pivot columns of *A* (see Theorem 6 and 13).

Consequence: As the number of pivots can not exceed the number of rows or columns, **Theorem 14*** implies the following two inequalities:

1.) dim Col A = rank A \leq min{m,n}

2.) n-m $\leq \dim \operatorname{Nul} A \leq n - \dim \operatorname{Col} A$

Note: This list could be easily further expanded. However, we will not do this here as every new inequality would be just a logical consequence of the restrictions on the number of pivot or non-pivot columns.

- **Example:**
 - a. If A is a 7×9 matrix with a two-dimensional null space, what is the rank of A?
 - b. Could a 6×9 matrix *B* have a two-dimensional null space?

THE INVERTIBLE MATRIX THEOREM (CONTINUED)

- **Theorem:** Let *A* be an $n \times n$ matrix. Then the following statements are each equivalent to the statement that *A* is an invertible matrix.
 - m. The columns of A form a basis of \mathbb{R}^n .
 - n. Col $A = \mathbb{R}^n$
 - o. dim $\operatorname{Col} A = n$
 - p. Rank A = n
 - q. Nul $A = \{0\}$
 - **r**. dim Nul A = 0

Proof: This follows from **Theorem 14***.

You do **not** have to memorize this theorem!