Math 22 - Fall 2019 Practice Exam 1

Your name:

Section (please check the box):	\Box Section 1 (10 hour)	\Box Section 2 (2 hour)
The second		

INSTRUCTIONS

- Except on clearly indicated short answer problems, you must explain what you are doing, and show your work. You will be *graded on your work*, not just on your answer.
- It is fine to leave your answer in a form such as $\sqrt{239}$ or $(385)(13^3)$. However, if an expression can be easily simplified (such as $\cos(\pi)$ or (3-2)), you should simplify it.
- You may use the last page for scrap paper.
- This is a closed book exam. You may not use notes, computing devices (calculators, computers, cell phones, etc.) or any other external resource.

GOOD LUCK!

- (1) Please indicate whether the following statements are **TRUE** or **FALSE**. **Circle the correct answer**. You do not have to show your work, however thinking about the problem on a scrap paper is recommended.
 - 1.) The linear system

$$3x + 7y + z = -1$$

$$-x - y + z = -3$$

$$-2y - 2z = 5$$

is consistent.

TRUE FALSE

Solution: This is true. The augmented matrix of the system is

$$[A|\mathbf{b}] = \begin{bmatrix} 3 & 7 & 1 & -1 \\ -1 & -1 & 1 & -3 \\ 0 & -2 & -2 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 0 & -4 & 11 \\ 0 & 2 & 2 & -5 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \mathrm{ef}([A|\mathbf{b}]).$$

We see from the echelon form ef([A|b]) of [A|b] that the system is consisten and has infinitely many solutions, as there is a non-pivot column which corresponds to a free variable.

2.) A vector **b** is in the span of the columns of a matrix A if and only if the equation $A\mathbf{x} = \mathbf{b}$ is consistent.

TRUE

FALSE

Solution: This is true. We have seen this in Lecture 4, Theorem 3.

- 3.) If there is a pivot in each row of a coefficient matrix, there are no free variables.
 - TRUE

FALSE

Solution: This is false. If there is a pivot in every **column** of the coefficient matrix then there are no free variables.

4.) If there is a pivot in each row of an augmented matrix, the system is consistent.

TRUE

FALSE

Solution: This is false. If there is a pivot in every row of the **coefficient matrix** then the system is consistent.

- 5.) A set of 3 vectors in \mathbb{R}^4 is always linearly independent.
 - TRUE

FALSE

Solution: This is false. Take $\mathbf{v}_1 = \mathbf{0}$ and then choose any two other vectors \mathbf{v}_2 and \mathbf{v}_3 , then the set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is linearly dependent.

6.) A set of 6 vectors in \mathbb{R}^7 can never span \mathbb{R}^7 .

TRUE FALSE

Solution: This is true. Writing the 6 vectors as the columns of a matrix A, we have that A is a 7×6 matrix. That the 6 vectors span \mathbb{R}^7 is equivalent to the statement that the equation $A\mathbf{x} = \mathbf{b}$ has a solution for all $\mathbf{b} \in \mathbb{R}^7$. This means that A must have a pivot in every row. But the number of pivots is at most 6, so A can never have a pivot in every row. So a set of 6 vectors in \mathbb{R}^7 can never span \mathbb{R}^7 .

(2) Let

$$A = \begin{bmatrix} 3 & 0 & 3 & 0 \\ 1 & 2 & 3 & -4 \\ 2 & -1 & 1 & 2 \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} 6 \\ 0 \\ 5 \end{bmatrix}$$

a) Solve the matrix equation $A\mathbf{x} = \mathbf{b}$, and write the solution in parametric vector form.

Solution: We row reduce the augmented matrix of the system:

$$\begin{bmatrix} A|\mathbf{b} \end{bmatrix} = \begin{bmatrix} 3 & 0 & 3 & 0 & | & 6 \\ 1 & 2 & 3 & -4 & | & 0 \\ 2 & -1 & 1 & 2 & | & 5 \end{bmatrix} \xrightarrow{\frac{1}{3}R1} \begin{bmatrix} 1 & 0 & 1 & 0 & | & 2 \\ 1 & 2 & 3 & -4 & | & 0 \\ 2 & -1 & 1 & 2 & | & 5 \end{bmatrix} \xrightarrow{-R1+R2,-2R1+R3} \begin{bmatrix} 1 & 0 & 1 & 0 & | & 2 \\ 0 & 2 & 2 & -4 & | & -2 \\ 0 & -1 & -1 & 2 & | & 1 \end{bmatrix}$$
$$\xrightarrow{\frac{1}{2}R2} \begin{bmatrix} 1 & 0 & 1 & 0 & | & 2 \\ 0 & 1 & 1 & -2 & | & -1 \\ 0 & -1 & -1 & 2 & | & 1 \end{bmatrix} \xrightarrow{R2+R3} \begin{bmatrix} 1 & 0 & 1 & 0 & | & 2 \\ 0 & 1 & 1 & -2 & | & -1 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix} = \operatorname{ref}([A|\mathbf{b}])$$

Then we write down the equations we obtain from the reduced echelon form ref([A|b]):

Then we rewrite these equations into vector form (by adding dummy zeros in the empty spaces):

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \\ 0 \\ 0 \end{bmatrix} + x_3 \cdot \begin{bmatrix} -1 \\ -1 \\ 1 \\ 0 \end{bmatrix} + x_4 \cdot \begin{bmatrix} 0 \\ 2 \\ 0 \\ 1 \end{bmatrix}.$$

A nicer version with more emphasis on the vector equations is

$$\begin{bmatrix} x_1\\ x_2\\ x_3\\ x_4 \end{bmatrix} = \begin{bmatrix} 2\\ -1\\ 0\\ 0 \end{bmatrix} + s \cdot \begin{bmatrix} -1\\ -1\\ 1\\ 0 \end{bmatrix} + t \cdot \begin{bmatrix} 0\\ 2\\ 0\\ 1 \end{bmatrix}, \text{ where } s, t \in \mathbb{R}.$$

b) Without doing any row operations, write the solution set to the matrix equation $A\mathbf{x} = 5\mathbf{b}$.

Solution: By the linearity of the matrix vector multiplication we have: if $A\mathbf{z} = \mathbf{b}$, for some vector \mathbf{z} then

$$5 \cdot A\mathbf{z} = A(5\mathbf{z}) = 5\mathbf{b}.$$

Furthermore we get all solutions \mathbf{x} , such that $A\mathbf{x} = 5\mathbf{b}$ this way: If $A\mathbf{p} = 5\mathbf{b}$, then it is easy to see that $A\left(\frac{1}{5} \cdot \mathbf{p}\right) = \mathbf{b}$ and so $\mathbf{p} = 5\left(\frac{1}{5} \cdot \mathbf{p}\right)$ or 5 times a vector \mathbf{z} which satisfies $A\mathbf{z} = \mathbf{b}$. Therefore the set of solutions is

$$\begin{bmatrix} x_1\\x_2\\x_3\\x_4 \end{bmatrix} = \begin{bmatrix} 10\\-5\\0\\0 \end{bmatrix} + s \cdot \begin{bmatrix} -1\\-1\\1\\0 \end{bmatrix} + t \cdot \begin{bmatrix} 0\\2\\0\\1 \end{bmatrix}, \text{ where } s, t \in \mathbb{R}.$$
(1)

Here the factor 5 can be eliminated in the parameter version, as $s, t \in \mathbb{R}$. Note: Just the answer in the equation (1) is sufficient for this problem. c) Write the solution to the homogenous equation $A\mathbf{x} = \mathbf{0}$ in parametric vector form.

Solution: We row reduce the augmented matrix of the system:

$$[A|\mathbf{0}] = \begin{bmatrix} 3 & 0 & 3 & 0 & 0 \\ 1 & 2 & 3 & -4 & 0 \\ 2 & -1 & 1 & 2 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} \boxed{1} & 0 & 1 & 0 & 0 \\ 0 & \boxed{1} & 1 & -2 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} = \operatorname{ref}([A|\mathbf{0}]).$$

This involves the same steps as in part **a**). We see that the fixed vector disappears and the solution is

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = s \cdot \begin{bmatrix} -1 \\ -1 \\ 1 \\ 0 \end{bmatrix} + t \cdot \begin{bmatrix} 0 \\ 2 \\ 0 \\ 1 \end{bmatrix}, \text{ where } s, t \in \mathbb{R}.$$

Note: We could also argue with the theorem about the comparison between the solution to the homogeneous system and the nonhomogeneous system from **Lecture 4**.

d) Is the solution set of $A\mathbf{x} = \mathbf{0}$ a point, a line, a plane, a 3-dimensional space, or all of \mathbb{R}^4 ? Explain your answer.

Solution: The set of solutions is spanned by two linearly independent vectors. This means it is a plane.

(3) We want to find a polynomial p(x) in the xy-plane that passes through the following points in the plane:

 $P_1 = (-2,2), P_2 = (-1,3), P_3 = (0,-2), P_4 = (1,0) \text{ and } P_5 = (2,6).$

We know that p(x) is a polynomial of the following form.

 $p(x) = a + bx^{2} + cx^{3} + dx^{5} + ex^{6}.$

a) Write down the equations for the coefficients of p.

Solution: Each point $P_i = (x, y) = (x, p(x))$ gives an equation for the coefficients:

$P_1 = (-2, 2):$	a	$+b\cdot 2^2$	$+c \cdot (-2^3)$	$+d \cdot (-2^5)$	$+e\cdot 2^6$	= 2
$P_2 = (-1, 3):$	a	$+b \cdot 1$	$+c \cdot (-1)$	$+d \cdot (-1)$	$+e \cdot 1$	= 3
$P_3 = (0, -2):$	a	$+b \cdot 0$	$+c \cdot 0$	$+d \cdot 0$	$+e \cdot 0$	= -2
$P_4 = (1,0):$	a	$+b \cdot 1$	$+c \cdot 1$	$+d \cdot 1$	$+e \cdot 1$	= 0
$P_5 = (2, 6):$	a	$+b \cdot 2^2$	$+c \cdot 2^3$	$+d\cdot 2^5$	$+e\cdot 2^6$	= 6

b) Write down the augmented matrix of the system of linear equations from a). You do not have to solve this system.

Solution: For the augmented matrix we obtain:

[1]	2^{2}	-2^{3}	-2^{5}	2^{6}	2
1	1	-1	-1	1	3
1	0	0	0	0	-2
1	1	1	1	1	0
1	2^2	2^3	2^5	2^{6}	6

(4) Let

$$\mathbf{v}_1 = \begin{bmatrix} -1\\ 0\\ 1 \end{bmatrix} \quad \mathbf{v}_2 = \begin{bmatrix} 0\\ 1\\ 2 \end{bmatrix} \quad \mathbf{v}_3 = \begin{bmatrix} 3\\ 1\\ h \end{bmatrix} \quad \text{and} \quad \mathbf{v}_4 = \begin{bmatrix} -2\\ 2\\ 0 \end{bmatrix}$$

a) Find all the real values h for which $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ spans all of \mathbb{R}^3 . Explain your answer.

Solution: Let $A = [\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3]$ be the matrix whose columns are the vectors $\mathbf{v}_1, \mathbf{v}_2$ and \mathbf{v}_3 . Then the columns of A span \mathbb{R}^3 if and only if the matrix equation $A\mathbf{x} = \mathbf{b}$ is always consistent. This is true if and only if A has a pivot in every row. We row reduce A to echelon form U and see:

$$A = \begin{bmatrix} -1 & 0 & 3\\ 0 & 1 & 1\\ 1 & 2 & h \end{bmatrix} \stackrel{R_1+R_3}{\to} \begin{bmatrix} -1 & 0 & 3\\ 0 & 1 & 1\\ 0 & 2 & 3+h \end{bmatrix} \stackrel{-2R_2+R_3}{\to} \begin{bmatrix} \begin{vmatrix} -1 \\ 0 & 3 \\ 0 & 1 & 1\\ 0 & 0 & 1+h \end{bmatrix} = U.$$

We see that A has a pivot in every row if and only if $h \neq -1$. Therefore the vectors span \mathbb{R}^3 if and only if $h \neq -1$.

b) Let h = 1, and write \mathbf{v}_4 as a linear combination of $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$.

Solution: The vector \mathbf{v}_4 is a linear combination of the vectors $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ if the equation

$$x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + x_3\mathbf{v}_3 = \mathbf{v}_4$$

has a solution. This is equivalent to the matrix equation $A\mathbf{x} = \mathbf{v}_4$, where the matrix $A = [\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3]$ and $\mathbf{x} = (x_1, x_2, x_3)$. This sytem of linear equations has the augmented matrix $[A|\mathbf{v}_4]$. Again we use the row reduction algorithm to solve this system of equations.

$$\begin{bmatrix} A|\mathbf{v}_{4}] = \begin{bmatrix} -1 & 0 & 3 & | & -2\\ 0 & 1 & 1 & | & 2\\ 1 & 2 & 1 & | & 0 \end{bmatrix} \overset{R_{1}+R_{3}}{\rightarrow} \begin{bmatrix} -1 & 0 & 3 & | & -2\\ 0 & 1 & 1 & | & 2\\ 0 & 2 & 4 & | & -2 \end{bmatrix} \overset{-2R_{2}+R_{3}}{\rightarrow} \begin{bmatrix} -1 & 0 & 3 & | & -2\\ 0 & 1 & 1 & | & 2\\ 0 & 0 & 2 & | & -6 \end{bmatrix} \overset{1}{\rightarrow} \overset{1}{\rightarrow} \begin{bmatrix} -1 & 0 & 3 & | & -2\\ 0 & 1 & 1 & | & 2\\ 0 & 0 & 1 & | & -3 \end{bmatrix} \overset{-R_{3}+R_{2},-3R_{3}+R_{1}}{\rightarrow} \begin{bmatrix} -1 & 0 & 0 & | & 7\\ 0 & 1 & 0 & | & 5\\ 0 & 0 & 1 & | & -3 \end{bmatrix} \overset{(-1)R_{1}}{\rightarrow} \begin{bmatrix} 1 & 0 & 0 & | & -7\\ 0 & 1 & 1 & | & 1\\ 0 & 0 & 1 & | & -3 \end{bmatrix}$$

Hence $\mathbf{v}_4 = -7\mathbf{v}_1 + 5\mathbf{v}_2 - 3\mathbf{v}_3$ and \mathbf{v}_4 can be written as a linear combination of $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$.

(5) Determine if each set is linearly dependent or linearly independent. Justify your answer.

General solution: In each case we can check the linear dependence equation, i.e if the zero vector **0** can be written as a non trivial linear combination of the given vectors. We can also check whether one of the vectors can be expressed as a linear combination of the others.

$$\mathbf{a}) \, \left\{ \left[\begin{array}{c} 1\\5 \end{array} \right], \left[\begin{array}{c} -2\\3 \end{array} \right] \right\}$$

Solution: In the case of two non zero vectors we know that they are linearly dependent if and only if one is the multiple of the other, or

$$c\left[\begin{array}{c}1\\5\end{array}\right] = \left[\begin{array}{c}-2\\3\end{array}\right].$$

However, this can not be true, so these two vectors are linearly independent.

$$\mathbf{b} \left\{ \begin{bmatrix} -3\\1\\2\\0 \end{bmatrix}, \begin{bmatrix} -5\\3\\0\\0 \end{bmatrix}, \begin{bmatrix} 2\\0\\3\\2 \end{bmatrix} \right\}$$

Solution: We check whether there are numbers x_1, x_2 and x_3 , not all zero, such that

x_1	$\begin{bmatrix} -3 \\ 1 \\ 2 \\ 0 \end{bmatrix}$	$+x_{2}$	$\begin{bmatrix} -5\\ 3\\ 0\\ 0 \end{bmatrix}$	$+ x_3$	$\begin{bmatrix} 2 \\ 0 \\ 3 \\ 2 \end{bmatrix}$	=	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	
-------	---	----------	--	---------	--	---	--	--

However, the last row gives us $2x_3 = 0$, so $x_3 = 0$. This implies $x_1 = 0$ in the third row. Finally this implies $x_2 = 0$ in the second row. So the only solution is $x_1 = x_2 = x_3 = 0$ and the three vectors are linearly independent.

$$\mathbf{c} \left\{ \begin{bmatrix} 10\\-4\\-1\\-6 \end{bmatrix}, \begin{bmatrix} 6\\0\\9\\-3 \end{bmatrix}, \begin{bmatrix} -7\\-10\\-2\\-9 \end{bmatrix}, \begin{bmatrix} 7\\-8\\4\\8 \end{bmatrix}, \begin{bmatrix} 3\\-5\\1\\5 \end{bmatrix} \right\}.$$

Solution: When we have 5 vectors in \mathbb{R}^4 then they must be linearly dependent. To see that we write the vectors into the columns of a 4×5 matrix A. The linear dependence equation then translates to finding a nontrivial vector \mathbf{x} such that

$$A\mathbf{x} = \mathbf{0}.$$

As A has only 4 rows, it can only have 4 pivot columns. Hence A has a non-pivot column and there is at least one free variable for x. So there are non-trivial solutions and the vectors can not be linearly independent.

Note: A shorter answer is possible.

(6) Let T be the linear transformation given by

$$T\left(\left[\begin{array}{c} x_1\\ x_2 \end{array}\right]\right) = \left[\begin{array}{c} \frac{3}{2}x_1 + \frac{1}{2}x_2\\ x_1 - x_2\\ x_2 \end{array}\right].$$

a) Find the standard matrix for T.

Solution:

$$T\left(\begin{bmatrix}x_1\\x_2\end{bmatrix}\right) = \begin{bmatrix}\frac{3}{2}x_1 + \frac{1}{2}x_2\\x_1 - x_2\\x_2\end{bmatrix} = x_1\begin{bmatrix}\frac{3}{2}\\1\\0\end{bmatrix} + x_2\begin{bmatrix}\frac{1}{2}\\-1\\1\end{bmatrix} = \begin{bmatrix}\frac{3}{2}&\frac{1}{2}\\1&-1\\0&1\end{bmatrix}\begin{bmatrix}x_1\\x_2\end{bmatrix}.$$

So the standard matrix A, such that $A\mathbf{x} = T(\mathbf{x})$ is $A = \begin{bmatrix}\frac{3}{2}&\frac{1}{2}\\1&-1\end{bmatrix}.$

0 1

Alternative: We find that

$$T\left(\left[\begin{array}{c}1\\0\end{array}\right]\right) = \left[\begin{array}{c}\frac{3}{2}\\1\\0\end{array}\right] \text{ and } T\left(\left[\begin{array}{c}0\\1\end{array}\right]\right) = \left[\begin{array}{c}\frac{1}{2}\\-1\\1\end{array}\right]. \text{ Then } A = \left[\begin{array}{c}\frac{3}{2}&\frac{1}{2}\\1&-1\\0&1\end{array}\right],$$

by a **Theorem** from the lecture.

b) Find a vector **x** whose image under *T* is $\begin{bmatrix} 5\\2\\1 \end{bmatrix}$. **Solution:** We have to find a vector **x**, such that $T(\mathbf{x}) = A\mathbf{x} = \begin{bmatrix} 5\\2\\1 \end{bmatrix} = \mathbf{b}$. To this end we solve the system of linear equations with augmented matrix $[\bar{A}|\mathbf{b}]$:

$$\begin{bmatrix} \frac{3}{2} & \frac{1}{2} & 5\\ 1 & -1 & 2\\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{bmatrix} 1 & -1 & 2\\ \frac{3}{2} & \frac{1}{2} & 5\\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{-\frac{3}{2}R_1 + R_2} \begin{bmatrix} 1 & -1 & 2\\ 0 & 2 & 2\\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{\frac{1}{2}R_2} \begin{bmatrix} 1 & -1 & 2\\ 0 & 1 & 1\\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{-R_2 + R_3} \begin{bmatrix} 1 & -1 & 2\\ 0 & 1 & 1\\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{-R_2 + R_1} \begin{bmatrix} 1 & 0 & 3\\ 0 & 1 & 1\\ 0 & 0 & 0 \end{bmatrix}$$
. We obtain that
$$\begin{bmatrix} 3\\ 1 \end{bmatrix}$$
.

c) Is T one-to-one? Justify your answer.

Solution: Yes, because the columns of the standard matrix are linearly independent. Alternative: Yes, because A has a pivot in every column. For both statements see Lecture 8.

(7) Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation that first performs a horizontal shear that transforms \mathbf{e}_2 into $\mathbf{e}_2 - 2\mathbf{e}_1$ (leaving \mathbf{e}_1 unchanged) and then reflects points through the line $x_2 = -x_1$.

Find the standard matrix of T.

Solution: The composition of a two linear transformations is a linear transformation. We know that $T = R \circ H$, where H denotes the horizontal shear and R the reflection.

To find the standard matrix A, such that $A\mathbf{x} = T(\mathbf{x})$, we have to find the images $T(\mathbf{e}_1)$ and $T(\mathbf{e}_2)$ of the unit vectors. We have:

$$H(\mathbf{e}_1) = \mathbf{e}_1 \text{ and } T(\mathbf{e}_1) = R(H(\mathbf{e}_1)) = R(\mathbf{e}_1) = R\left(\begin{bmatrix} 1\\0 \end{bmatrix}\right) = \begin{bmatrix} 0\\-1 \end{bmatrix}.$$

$$H(\mathbf{e}_2) = \mathbf{e}_2 - 2\mathbf{e}_1 = \begin{bmatrix} -2\\1 \end{bmatrix} \text{ and } T(\mathbf{e}_2) = R(H(\mathbf{e}_1) = R\left(\begin{bmatrix} -2\\1 \end{bmatrix}\right) = \begin{bmatrix} -1\\2 \end{bmatrix}.$$

By Lecture 8 the standard matrix A is

$$A = \begin{bmatrix} 0 & -1 \\ -1 & 2 \end{bmatrix}.$$

(8) Suppose that T is a one-to-one linear transformation and that $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ are linearly independent vectors in \mathbb{R}^n . Prove that $\{T(\mathbf{v}_1), T(\mathbf{v}_2), \dots, T(\mathbf{v}_p)\}$ is also linearly independent.

Solution: As $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ are linearly independent vectors we know that

 $d_1 \mathbf{v}_1 + d_2 \mathbf{v}_2 + \ldots + d_p \mathbf{v}_p = \mathbf{0}$ implies $d_1 = d_2 = \ldots = d_p = 0.$ (1)

We want to show that

$$c_1T(\mathbf{v}_1) + c_2T(\mathbf{v}_2) + \ldots + c_pT(\mathbf{v}_p) = \mathbf{0}$$
 implies $c_1 = c_2 = \ldots = c_p = 0$.

However, by linearity

$$c_1T(\mathbf{v}_1) + c_2T(\mathbf{v}_2) + \ldots + c_pT(\mathbf{v}_p) = \mathbf{0}$$
 implies $T(\underbrace{c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \ldots + c_p\mathbf{v}_p}_{=\mathbf{w}}) = \mathbf{0}.$

Hence the vector $\mathbf{w} = \mathbf{0}$ as the map T is one-to-one. So the only vector whose image is the zero vector is the zero vector $\mathbf{0}$ in \mathbb{R}^n . So we conclude that

$$\mathbf{0} = \mathbf{w} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_p \mathbf{v}_p.$$

But this implies that $c_1 = c_2 = \ldots = c_p = 0$ by equation (1). This proves our claim.

(This page is intentionally left blank in case you need extra space for any of the problems. If you use this page for a particular problem, it is essential that you make a note on the page where the problem appears, indicating that your work is continued here.)