Math 22 - Fall 2019
Practice Exam 2

Your name:

Section (please check the box): O Section 1 (10 hour) O Section 2 (2 hour)

INSTRUCTIONS

e Except on clearly indicated short answer problems, you must explain what you are doing, and
show your work. You will be graded on your work, not just on your answer.

e Itis fine to leave your answer in a form such as /239 or (385)(133). However, if an expression
can be easily simplified (such as cos(7) or (3 — 2)), you should simplify it.

e You may use the last page for scrap paper.

e This is a closed book exam. You may not use notes, computing devices (calculators, computers,
cell phones, etc.) or any other external resource.

GOOD LUCK!



(1) Please indicate whether the following statements are TRUE or FALSE.
Circle the correct answer. You do not have to show your work, however thinking about the prob-
lem on a scrap paper is recommended.

1.) If dim(V') = p, and if S is a linearly dependent subset of V, then S contains more than p
vectors.

TRUE FALSE

2.) If a 6 x 4 matrix A has linearly independent columns, then the reduced row echelon form of
A contains two zero rows.

TRUE FALSE

3.) There exists a 3 x 5 matrix whose column space has dimension 4.

TRUE FALSE

4.) There exists a 3 x 3 matrix A such that dim(Nul(A4)) = Rank(A).

TRUE FALSE

5.) For any two n x n matrices A and B, we have det(AB) = det(BT A).

TRUE FALSE

6.) Let P be a subset of Py, the polynomials of degree at most 2, defined by
P={p(t)inPy:p(1) =2}.
Then P is a subspace of Ps.

TRUE FALSE

7.) Let PB be the n X n change of basis matrix that goes from 5 coordinates to C coordinates.

(—
Then, the columns of P span R™.
C+B

TRUE FALSE



(2) Consider the following matrices:

1 2 3 7 8 1
A_[4 5 6}’ B_[Q 10]’ C_[—Q]
For each of the following matrix operations, indicate whether the operation is defined. If an
expression is undefined, explain why. If an expression is defined, evaluate it.

a) BA+C.

b) BC.

¢) B+3I,



(3) a) Given that

a b c
det |d e f] =-6
g h i
find the value of
d e f

det 4a 4b 4c
g—3d h—3¢ 1—3f

b) Suppose that A, B and C' are 2 x 2 matrices with
1 1
det(4) = 9,det(C) = — and det (gATBCQ) — 2,

Find det(B), if possible, or explain why you cannot.



(4) Assume that A is row-equivalent to B.

12 3 -4
12 0 2
A= 2 4 -3 10
36 0 6

a) Find a basis for Col(A).

b) Find a basis for Nul(A).

¢) Find a basis for Row(A).
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1 1
(5) Let W = Span(S), where S = , (1) , g is a set of vectors in R*.
0 3

a) Find a subset R of S which is a basis for /. What is the dimension of W?

b) Give an example of a vector v which is in R* but is not in 1. Justify your answer.

¢) Find a basis B for R* by expanding the basis R you found in part a). Explain why B is a
basis for R%.



(6) Letpi(t) = 1,pa(t) = t+1,p3(t) = (t+1)%,ps(t) = (¢t +1)3 be four polynomials in P3. Let

B = {pl(t),pg(t),p3(t),p4(t)}, and let E = {1vt>t27t3}

be the standard basis of Pg.

a) Determine the coordinates of the vectors in B with respect to the basis F.

b) Determine the coordinates of the vectors in F with respect to the basis B.

Problem 6 continued on next page...



Continued from previous page...
1

¢) Suppose [q(t)}B = _21 . Find q(t).
3

d) Let pi(t) = 1,p2(t) = t + 1,p3(t) = (t +1)%,...,pnsr1(t) = (t + 1)™ be polynomials
in P,,. Show that the set

{pl(t)7 P2 (t)v p3(t)a sy anrl(t)}
forms a basis of P,,. (Hint: think about dimension.)



(7) Let V be the vector space of 2 x 2 upper triangular matrices, so that

V:{[a b]:a,b,cER}.
0 ¢
£ - 1 0 0 1 0 0
o 0O 0’0 0]’ 0 1
be the standard basis of V', and consider the alternate bases
1 -1 1 1 01
s={[o 1] Lo o) [0 1]}
c— 0 0 0 1 1 0
o O 1’0 O0|’]0 O '

and

Find P .
(2) Fin £+B

(b) Find P .
C+&

Problem 7 continued on next page...



Find P .
(¢) Fin C+B

Continued from previous page...



(8) Let A be am x n matrix and C be a n X m matrix, such that

AC = I,.

a) Show that the map 7" : R” — R, x — T'(x) = Ax is onto.

b) Show that the map S : R™ — R",x — S(x) = Cx is one-to-one.

¢) Ism > norn > m? Justify your answer.

d) Let R : R" — R™,x — R(x) = Bx be a linear map such that R is onto. Show that there
is a matrix D, such that
BD =1,



(This page is intentionally left blank in case you need extra space for any of the problems. If you
use this page for a particular problem, it is essential that you make a note on the page where the
problem appears, indicating that your work is continued here.)



