
US Tornado Trends

Kavi Krsnadas, Peyton Weber, Kayla Hamann, Soomin Kim, Allison Park, and Jakob Kim

Why Investigate Tornadoes as a function of Latitudes?

Method

Data Collection

- The data used was sourced from the National Oceanic and Atmospheric Administration (NOAA) National Weather Service.
- Our project analyzed each year from 2010 to 2018.

Original Data

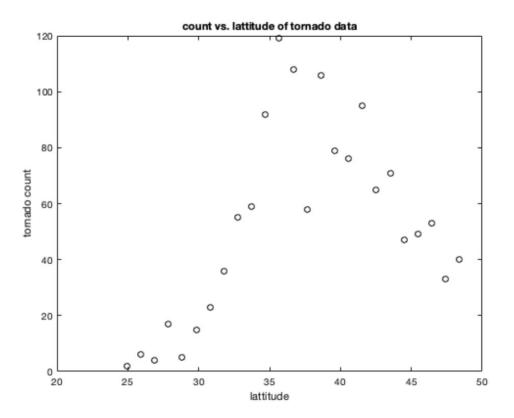
Α	В	С	D	E	F	G	Н	1	J	K		L	М	N	0	P	Q	R	S	
om	yr	mo	dy	date	time	tz	st	stf	stn	mag	inj	fa	it	loss	closs	slat	slon	elat	elon	lei
614471	2017	1		2 1/2/2017	9:03:00		3 TX	48	C)	1	0	0	30000	0	31.0707	-94.021	31.087	-93.9824	
614472	2017	1		2 1/2/2017	9:44:00		3 TX	48	C)	1	0	0	30000	0	30.5821	-93.758	30.6012	-93.7209	
614473	2017	1		2 1/2/2017	10:06:00		3 LA	22	C)	1	0	0	25000	0	30.5732	-93.5343	30.5725	-93.5294	
614474	2017	1		2 1/2/2017	10:17:00		3 LA	22	C)	1	0	0	50000	0	30.5618	-93.4362	30.5638	-93.4161	
614475	2017	1		2 1/2/2017	10:30:00		3 LA	22	C)	1	0	0	20000	0	30.5567	-93.3157	30.556	-93.2378	
614476	2017	1		2 1/2/2017	10:30:00		3 LA	22	C)	1	0	0	150000	0	30.4543	-93.2502	30.461	-93.2049	
614477	2017	1		2 1/2/2017	11:06:00		3 LA	22	C)	1	0	0	50000	0	31.3704	-92.5896	31.3727	-92.5808	
614478	2017	1		2 1/2/2017	11:30:00		3 LA	22	C)	0	0	0	75000	0	30.6231	-92.4694	30.6234	-92.4604	
614479	2017	1		2 1/2/2017	11:31:00		3 LA	22	C)	1	0	0	250000	0	31.0325	-92.3705	31.0334	-92.3468	
614480	2017	1		2 1/2/2017	11:44:00		3 LA	22	C)	1	0	0	1000000	0	30.9446	-92.1952	30.962	-92.1764	
614481	2017	1		2 1/2/2017	11:47:00		3 LA	22	C)	1	0	0	1000000	0	31.0602	-92.1408	31.0748	-92.096	
614482	2017	1		2 1/2/2017	11:51:00		3 LA	22	C)	1	0	0	2500000	0	31.0967	-92.0663	31.0967	-92.0485	
614483	2017	1		2 1/2/2017	13:02:00		3 MS	28	C)	0	0	0	50000	0	31.6671	-90.9352	31.6998	-90.8813	
614484	2017	1		2 1/2/2017	13:14:00		3 MS	28	C)	1	0	0	40000	0	31.8337	-90.8228	31.8654	-90.7352	

Final Data

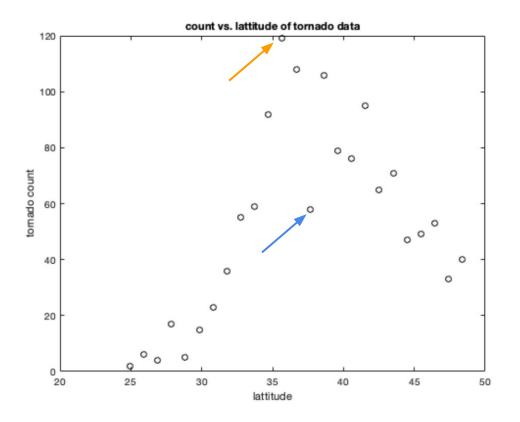
- The final data set is divided into three categories: the year, the range of latitudes, and the total count of tornadoes within that range.
- We divided the total latitude range by 50, because the latitude range covered by the United States is 50. These subgroups made handling the data easier.

013	28.3562 29.334	6;	
013	29.334 30.3118	25;	
013	30.3118 31.2896	24;	
013	31.2896 32.2674	39;	
013	32.2674 33.2452	44;	
013	33.2452 34.223	64;	
013	34.223 35.2008	60;	
013	35.2008 36.1786	86;	
013	36.1786 37.1564	97;	
013	37.1564 38.1342	59;	
013	38.1342 39.112	69;	
013	39.112 40.0898	58;	
013	40.0898 41.0676	75;	

The Code

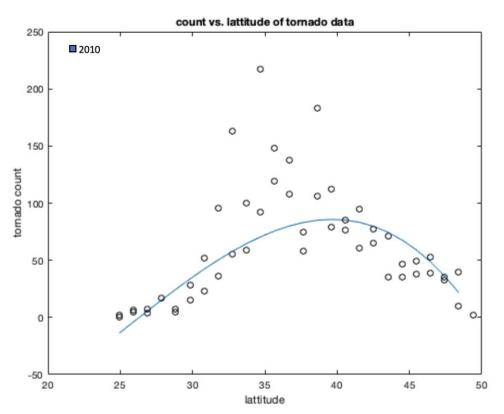

cubic fits

```
sumsmatrix = [M sx sx2 sx3;
            sx sx2 sx3 sx4
            sx2 sx3 sx4 sx5
            sx3 sx4 sx5 sx6];
fxy = [sy; syx; syx2; syx3];
a = sumsmatrix\fxy;
% create the cubic polynomial with these found coefficients
p3 = a(1) + a(2).*x + a(3).*x.^2 + a(4).*x.^3;
% plot this fit on the same graph as the linear fit and data points
plot(x,p3)
if (j == 2)
   X = X;
end
Y(j,1:length(y)) = y';
fits(j,1:length(y)) = p3';
```

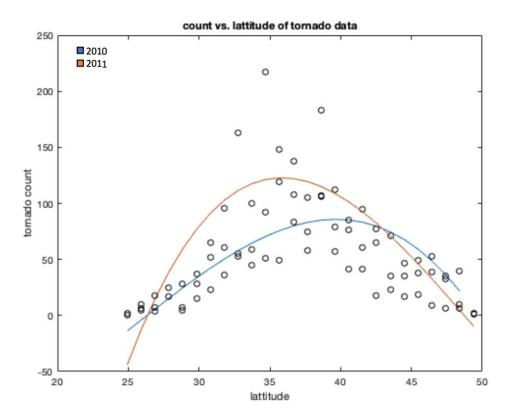

The Fit

- We chose the a polynomial of the third-degree, because it had the best fit without attempting to make the sum of the residuals arbitrarily close to zero.
- The following equation describes the relationship between latitudes and the count of tornadoes from the data set from 2010 to 2018:
 - $p(x) = -0.0122 21.1552x + 1.3115x^2 0.0181x^3$

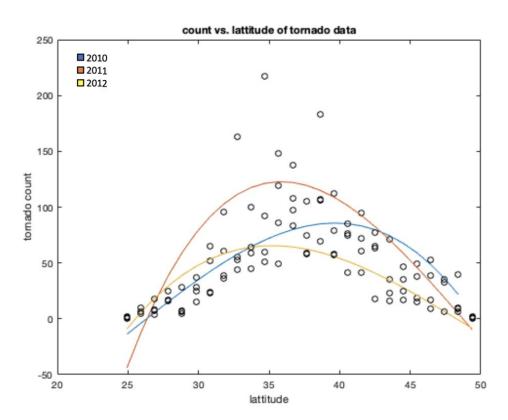
Results

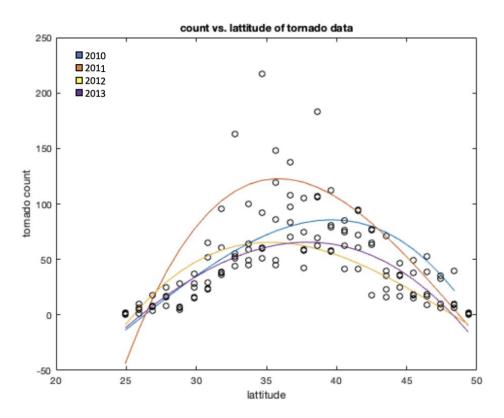


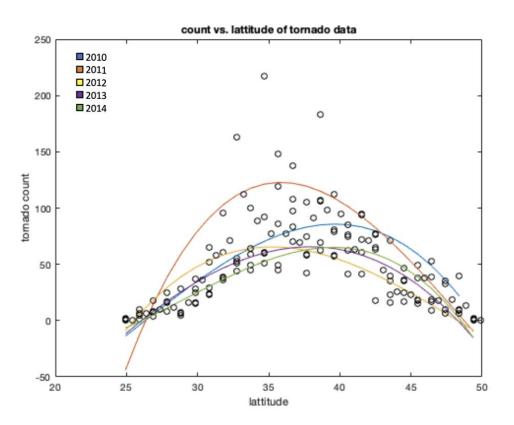
Plots of years accumulate over time

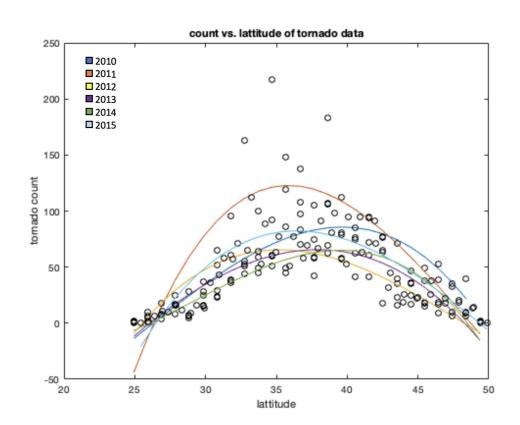

Plots of years accumulate over time

Peak: ~ 36 ° Outlier: ~ 38 °

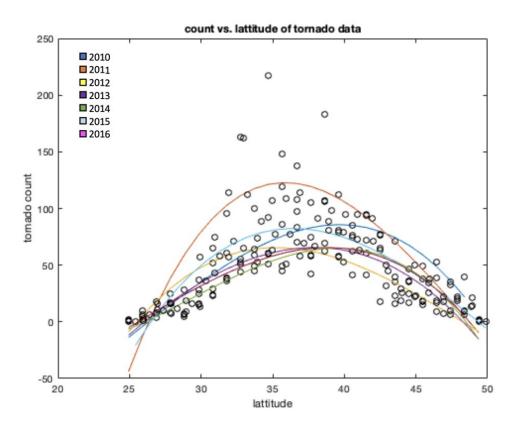


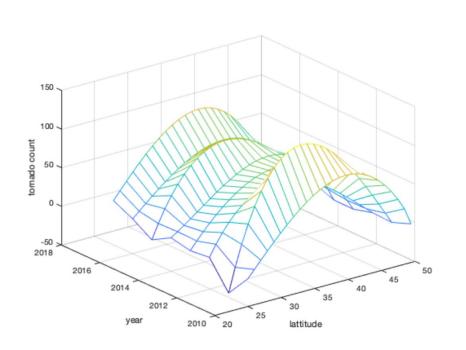

Blue curve maps the curve for **2010** shown previously

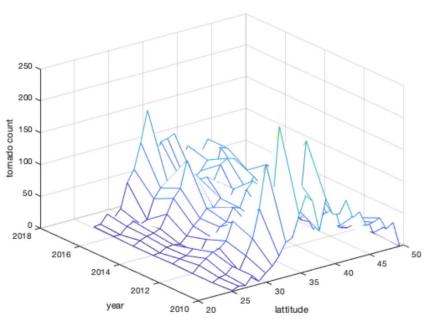

New points correspond to **2011**



Two curves are shifted to the right/left in comparison to the other

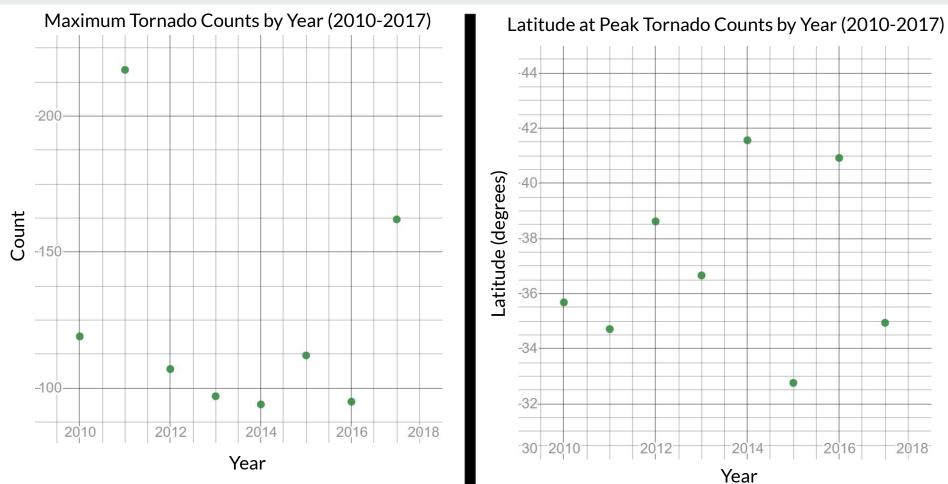


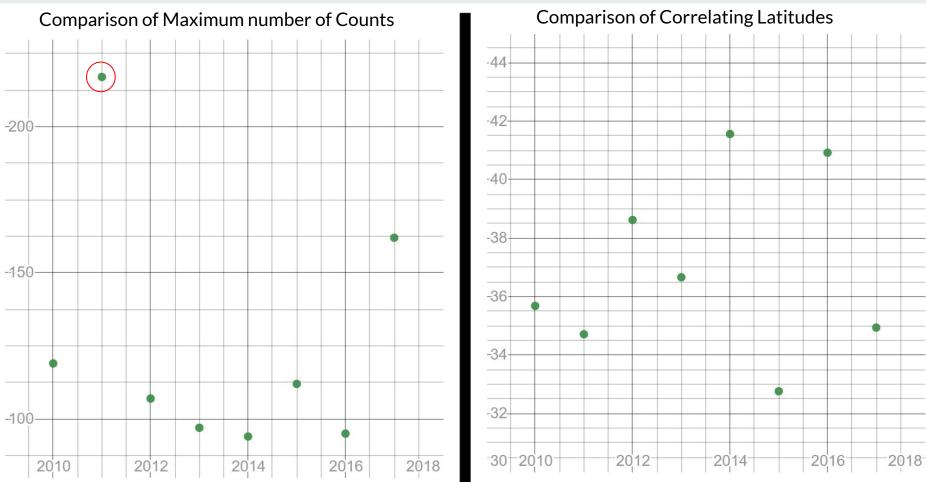

Aggregate Plot

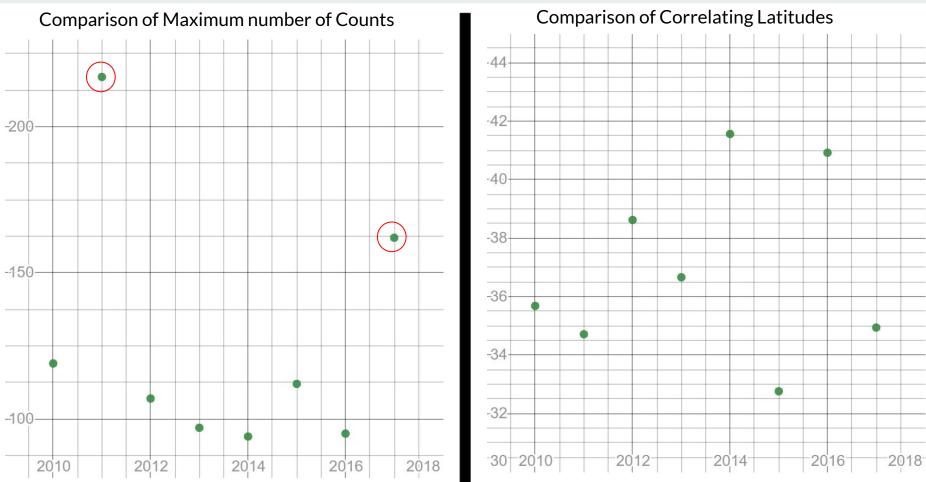


Curve for **2011** (orange) sticks out relative to other years

General trend where it peaks from 33 ~ 40 °


3D Graphs

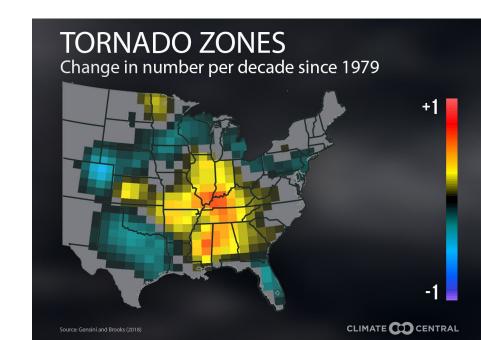




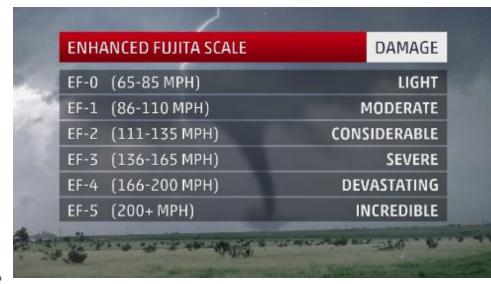

Maximum Tornado Counts and Corresponding Latitudes by Year:

	2010	2011	2012	2013	2014	2015	2016	2017
Peak	119	217	107	97	94	112	95	162
Latitude	35.68	34.71	38.62	36.66	41.56	32.76	40.92	32.94

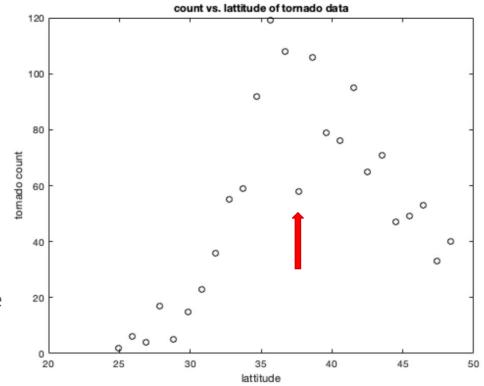
- More years to identify greater trends / patterns
- <u>Confounding factors</u> like observation challenges and landscape
- Separate data by:
 - distance
 - levels
- Investigate <u>irregularities</u>, like the low point at 36.5 in 2010 & 2011


IS CLIMATE CHANGE CREATING MORE TORNADOES?

Researchers have found that the most tornado-prone region of the country is shifting east, but they can't say how much global warming is to blame.


KATE WHEELING · UPDATED: MAR 7, 2019 · ORIGINAL: MAR 5, 2019

"Tornado Alley" may be shifting to the densely-populated Southeast, study shows


- More years to identify greater trends / patterns
- <u>Confounding factors</u> like observation challenges and landscape
- Separate data by:
 - distance
 - o <u>levels</u>
- Investigate <u>irregularities</u>, like the low point at 36.5 in 2010 & 2011

- More years to identify greater trends / patterns
- <u>Confounding factors</u> like observation challenges and landscape
- Separate data by:
 - distance
 - o <u>levels</u>
- Investigate <u>irregularities</u>, like the low point at 36.5 in 2010 & 2011

- More years to identify greater trends / patterns
- Confounding factors like observation challenges and landscape
- Separate data by:
 - o <u>distance</u>
 - <u>levels</u>
- Investigate <u>irregularities</u>, like the low point at 36.5 in 2010 & 2011

Sources

Data

https://www.spc.noaa.gov/wcm/#data

Fitting a Polynomial / Least squares

http://mathworld.wolfram.com/LeastSquaresFittingPolynomial.html

https://neutrium.net/mathematics/least-squares-fitting-of-a-polynomial/