MATH 22 HW 4
 PLEASE SUBMIT ON GRADESCOPE AT ANY TIME BEFORE WEDNESDAY, OCTOBER 21 AT 5:59PM EDT

To earn full credit, show all work and explain your answers carefully. Make your arguments using complete sentences. Technology should not be used for linear algebra computations. Exceptions: you may use technology to invert, multiply, and row-reduce matrices. The graders will take away 1 point for every question submission on Gradescope that is not properly tagged.
(1) (a) (5 points) Lay, Section 4.5, 6
(b) (5 points) Lay, Section 4.5, 22 and 44.
(c) (5 points) Give an explicit example of a 3-dimensional subspace $W \subset \mathbb{R}^{4}$ such that e_{2} and e_{3} are elements of W but e_{1} and e_{4} are not, or prove that such a subspace does not exist. If you give an example, make sure to explain how you know that your subspace has all of the desired properties (i.e., that it is a subspace, that it has dimension 3, and that it contains and does not contain the appropriate vectors).
(Hint: Is there a 2 -dimensional subspace of \mathbb{R}^{3} that contains e_{1} but not e_{2} or e_{3} ?)
(2) (a) (5 points) Suppose that U and W are two subspaces of a vector space V, and that $U \cap W=\{\overrightarrow{0}\}$. Let $\left\{u_{1} ; \ldots u_{k}\right\}$ be a list of linearly independent vectors in U and $\left\{w_{1} ; \ldots w_{p}\right\}$ be a list of linearly independent vectors in W. Show that $\left\{u_{1} ; \ldots u_{k} ; w_{1} ; \ldots w_{p}\right\}$ is a linearly independent list.
(b) (5 points) Show that if $\operatorname{dim} U+\operatorname{dim} W>\operatorname{dim} V$, then $U \cap W \neq\{\overrightarrow{0}\}$.
(3) (5 points) Suppose V is a finite dimensional vector space, and let $T: V \rightarrow V$ be a linear transformation. Show that T is into if and only if T is onto. (Note: V is not necessarily \mathbb{R}^{n} so you should NOT cite the Invertible Matrix Theorem! There is another theorem which might be more helpful, though.)
(4) (5 points) Let $V=\left\{f \in \mathbb{P}_{7} \mid f(2)=f(3)=0\right\}$ (i.e., the set of polynomials of degree at most 7 which have roots at 2 and 3). Construct a linear transformation with domain \mathbb{P}_{7} for which V is the kernel. What is the dimension of V ? Do not use row reduction.

