Math 22

Homework \# 3

Write careful solutions for the homework that demonstrates a command of what you have learned on week $\# 3$. Do not carry out computations without telling the reader why you are doing the computation. If you say something is true provide a short explanation using definitions or Theorems. Hand-in something that you can feel proud of.

1. Define a linear transformation $T: \mathbb{P}_{2} \rightarrow \mathbb{R}^{2}$ by $T(\mathbf{p}(t))=\left[\begin{array}{l}\mathbf{p}(0) \\ \mathbf{p}(0)\end{array}\right]$.
(a) Find polynomials \mathbf{p}_{1} and \mathbf{p}_{2} that span the kernel of T .
(b) Describe the range of T .
2. Find the standard matrix for the following linear transformations.
(a) The linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ that satisfy $T\left(\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right)=\left[\begin{array}{l}1 \\ 3\end{array}\right]$, $T\left(\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right)=\left[\begin{array}{r}4 \\ -7\end{array}\right]$ and $T\left(\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right)=\left[\begin{array}{r}-5 \\ 4\end{array}\right]$.
(b) The linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that rotates points (about the origin) through the angle $-\pi / 4$ (clockwise).
(c) The linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ defined by $T\left(x_{1}, x_{2}, x_{3}\right)=\left[x_{1}-5 x_{2}+4 x_{3}, x_{2}-6 x_{3}\right]$
3. Explain why if the columns of B are linearly dependent, then so are the columns of the matrix $A B$.
4. Suppose that A is an $n \times n$ matrix and the equation $A \mathbf{x}=\mathbf{b}$ has a solution for every $\mathbf{b} \in \mathbb{R}^{n}$. Explain why A has to be invertible.
