Math 22

Homework 6
Write careful solutions for the homework that demonstrates a command of what you have learned on week $\# 6$. Do not carry out computations without telling the reader why you are doing the computation. If you say something is true provide a short explanation using definitions or Theorems. Hand-in something that you can feel proud of.

1. Let λ be an eigenvalue of an invertible matrix A . Show that λ^{-1} is an eigenvalue of A^{-1}.
2. Show that If λ is an eigenvalue of A, then it is also an eigenvalue of A^{T}.
3. It can be shown that the algebraic multiplicity of an eigenvalue is always greater than or equal to the dimension of the corresponding eigenspace. Find h in the matrix A below so that the eigenspace for $\lambda=5$ is two dimensional.

$$
A=\left[\begin{array}{rrrr}
5 & -2 & 6 & -1 \\
0 & 3 & h & 0 \\
0 & 0 & 5 & 4 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

4. Diagonalize $A=\left[\begin{array}{rrr}-7 & -16 & 4 \\ 6 & 13 & -2 \\ 12 & 16 & 1\end{array}\right]$ given that one eigenvalue is $\lambda=5$ and one eigenvector is $\mathbf{b}_{1}=\left[\begin{array}{r}-2 \\ 1 \\ 2\end{array}\right]$.
