Math 22

Homework 2
Write careful solutions for the homework that demonstrates a command of what you have learned on week $\# 2$. Do not carry out computations without telling the reader why you are doing the computation. If you say something is true provide a short explanation using definitions or Theorems. Hand-in something that you can feel proud of.

1. Answer the following questions and provide an explanation. The explanation is more important than the answer.
(a) Suppose A is a 3×3 matrix with two pivot positions. Does the equation $A \mathbf{x}=\mathbf{0}$ have a non-trivial solution? Does the equation $A \mathbf{x}=\mathbf{b}$ have at least one solution for every possible \mathbf{b} ?
(b) Suppose A is a 2×4 matrix with two pivot positions. Does the equation $A \mathbf{x}=\mathbf{0}$ have a non-trivial solution? Does the equation $A \mathbf{x}=\mathbf{b}$ have at least one solution for every possible \mathbf{b} ?
2. Solve the problem making sure to tell me why you are doing the computations and why you are making your conclusions. Suppose you have the following vectors:

$$
\mathbf{v}_{1}=\left[\begin{array}{r}
1 \\
-5 \\
-3
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{r}
-2 \\
10 \\
6
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{r}
2 \\
-9 \\
h
\end{array}\right]
$$

(a) For what values of h is \mathbf{v}_{3} in $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$?
(b) For what values of h is $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ linearly dependent?
3. Let W be the following set:

$$
W=\left\{\left[\begin{array}{c}
s+3 t \\
s-t \\
2 s-t \\
4 t
\end{array}\right]: s, t \in \mathbb{R}\right\}
$$

(a) Use the definition of subspace to show that W is a subspace of \mathbb{R}^{4}.
(b) Use the theorem about the span of any set of vectors being a subspace to show that W is a subspace.
4. Let

$$
A=\left[\begin{array}{rrr}
-8 & -2 & -9 \\
6 & 4 & 8 \\
4 & 0 & 4
\end{array}\right], \quad \mathbf{w}=\left[\begin{array}{r}
2 \\
1 \\
-2
\end{array}\right]
$$

(a) Is \mathbf{w} is in $\mathrm{Col} A$? Explain.
(b) Is \mathbf{w} in $\operatorname{Nul} A$? Explain.
5. If a mass m is placed at the end of a spring, and if the mass is pulled downward and released, the mass-spring system will begin to oscillate. The displacement $y(t)$ of the mass from its resting position is given by a function of the form

$$
\begin{equation*}
y(t)=a \cos \omega t+b \sin \omega t \tag{1}
\end{equation*}
$$

where ω is a constant that depends on the spring and the mass (recall that $\sin \omega t$ and $\cos \omega t$ are periodic functions - they repeat as a sinusoidal curve with periodicity $\frac{2 \pi}{\omega}$ - this repetition is mirrored in the back and forth movement of a perfect spring that never loses energy.)
Show that the set of all functions described in Equation (1) (with ω fixed and a, b arbitrary numbers) is a vector space. These vector spaces are important for communications systems where sound and data travel on sinusoidal waves.

