Math 22

Homework \# 4
Write careful solutions for the homework that demonstrates a command of what you have learned on week \#4. Do not carry out computations without telling the reader why you are doing the computation. If you say something is true provide a short explanation using definitions or Theorems. Hand-in something that you can feel proud of.

1. Provide careful explanations to the following questions.
(a) Is it possible for a 5×5 matrix to be invertible when its columns do not span \mathbb{R}^{5} ?
(b) If C is a 6×6 matrix and the equation $C \mathbf{x}=\mathbf{v}$ is consistent for all $\mathbf{v} \in \mathbb{R}^{6}$, is it possible for $C \mathbf{x}=\mathbf{v}$ to have more than one solution for some \mathbf{v}.
(c) If H is a square matrix and the equation $H \mathbf{x}=\mathbf{v}$ is inconsistent for some \mathbf{v}, what can you say about the equation $H \mathbf{x}=\mathbf{0}$?
2. Let $A=\left[\begin{array}{rrrrr}1 & 2 & -5 & 11 & -1 \\ 2 & 4 & -5 & 15 & 2 \\ 1 & 2 & 0 & 4 & 5 \\ 3 & 6 & -5 & 19 & -2\end{array}\right]$ be row equivalent to $B=\left[\begin{array}{rrrrr}1 & 2 & 0 & 4 & 5 \\ 0 & 0 & 5 & -7 & 8 \\ 0 & 0 & 0 & 0 & -9 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$
(a) Find a basis for $\operatorname{Nul} \mathrm{A}$ and find its dimension.
(b) Find a basis for Col A and find the rank of A .
3. Let $T: V \rightarrow W$ be a linear transformation. Show that if $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is a linearly dependent subset of V, then $\left\{T\left(\mathbf{v}_{1}\right), \ldots, T\left(\mathbf{v}_{p}\right)\right\}$ is a linearly dependent subset of W.
4. Determine if the following sets are linearly independent. Explain why or why not. If not find a basis for the space spanned by the set.
(a) $\{1+t, 1-t, 2\}$, so the set contains three polynomials $\mathbf{p}_{1}(t)=1+t, \mathbf{p}_{2}(t)=1-t$ and $\mathbf{p}_{3}(t)=2$.
(b) $\left\{1+t^{2}, 1-t^{2}\right\}$, this set contains two polynomials $\mathbf{p}_{1}(t)=1+t^{2}$ and $\mathbf{p}_{2}(t)=1-t^{2}$.
